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Abstract

This paper presents a search-based approach for the game of Ponnuki-
Go. A novel evaluation function is presented that is used in an alpha-beta
framework with several search enhancements. The search engine performs
well on solving positions and on heuristic play. Optimal solutions were found
for small empty boards up to 5 x 5, as well as some 6 x 6 variants. We believe
that our system can also be applied to capture, life/death and connection
problems in the game of Go.

1 Introduction

In the last decades, Go has received significant attention from AI research [2, 10].
Yet, despite all efforts, the best computer Go programs are still weak. Exemplary
is the fact that the largest square board for which a computer proof has been
published is only 4x4 [15]. Results based on human analysis exist for 5x5 and
6x6 but are exceedingly subtle and have not been confirmed by computers [8].

Ponnuki-Go (also known as Atari-Go) is a simplified version of Go that is often
used to teach children the first principles of Go. The game is played by two players,
black and white, who consecutively place stones of their colour on the intersections
of a square grid. Black starts the game. During the game stones remain fixed.
Adjacent stones of equal colour are connected, diagonal connections are not used.
The goal of the game is to be the first to capture one or more of the opponent’s
stones. Stones are captured when they are completely surrounded and no longer
connected to a free point on the board. Two rules distinguish Ponnuki-Go from
Go. First, capturing directly ends the game. The game is won by the side that
captured the first stone(s). And second, passing is not allowed (so there is always
a winner).

Ponnuki-Go is simpler than Go because there are no ko-fights and sacrifices,
and the end is well defined (capture). However, it does contain important as-
pects of Go such as capturing stones, determining life/death and making territory.
From an AT perspective solving small-board Ponnuki-Go is interesting because the
perfect play provides an absolute benchmark for testing the performance of learn-
ing algorithms. Furthermore, since capturing stones is an essential Go skill, any
algorithm that performs well on this task, will also be of interest in computer Go.

In this paper we present a system that plays Ponnuki-Go using a search-based
approach. The remainder of the paper is organized as follows: Section 2 presents



the search method, which is based on alpha-beta with several enhancements. Sec-
tion 3 introduces our evaluation function. Then in section 4 we show the small-
board solutions followed by some experimental results on the performance of the
search enhancements and of the evaluation function. Section 5 presents some pre-
liminary results on the performance of our program on larger boards. Finally,
section 6 provides conclusions and some ideas for future work.

2 The search method

The standard framework for game-tree search is alpha-beta, which comes in many
flavours. We selected an iterative deepening Principal Variation Search (PVS)
with a minimal window in a negamax framework [9]. The efficiency of alpha-beta
search usually improves several orders of magnitude by applying the right search
enhancements. We selected the following: (1) transposition tables [11], (2) killer
moves [1], (3) history heuristic [13] and (4) enhanced transposition cutoffs [12].

Transposition tables prevent searching the same position several times by stor-
ing best move, score, and depth of previously encountered positions. For the
transposition tables we use the two-deep replacement scheme [3]. The move order-
ing is as follows: first the transposition move, then two killer moves, and finally
the remainder of the moves are sorted by the history heuristic. Killer moves rely
on the assumption that a good move in one branch of the tree is often good at
another branch at the same depth. The history heuristic uses a similar idea but is
not restricted to the depth at which moves are found. In our implementation the
killer moves are stored (and tested) not only at their own depth but also one and
two ply deeper. Further, our implementation of the history heuristic employs one
table for both black and white moves, thus utilizing the Go proverb “the move of
my opponent is my move”.

Enhanced transposition cutoffs take extra advantage of the transposition table
by looking at all successors of a node to find whether they contain transpositions
that lead to a beta cutoff before a deeper search starts. Since enhanced transpo-
sition cutoffs are expensive they are only used three or more plies away from the
leaves (there the amount of the tree that can be cutoff is sufficiently large).

3 The evaluation function

The evaluation function is an essential ingredient for guiding the search towards
strong play. Unlike in chess, no good and especially no cheap evaluation functions
exist for Go [2, 10]. Despite of this we tried to build an evaluation function for the
game of Ponnuki-Go. The default for solving small games is to use a three-valued
evaluation function with values [1 (win), 0 (unknown), —1 (loss)]. Such a three-
valued evaluation function is quite efficient for solving games, due to the narrow
window which generates many beta cutoffs, but becomes useless for strong play
on large boards. Therefore we developed a heuristic evaluation function.

Our heuristic evaluation function is based on four principles: (1) maximizing
liberties, (2) maximizing territory, (3) connecting stones, and (4) making eyes.



Naturally these four principles relate in negated form to the opponent’s stones.
The first principle follows directly from the goal of the game (capturing stones).
Since the number of liberties is a lower bound on the number of moves that is
needed to capture a stone, maximizing this number is a good defensive strategy
whereas minimizing the opponent’s liberties directly aims at winning the game.
The second principle, maximizing territory, is a long-term goal since it allows one
side to place more stones inside its own territory (before filling it completely). The
third principle follows from the observation that a small number of large groups
is easier to defend than a large number of small groups. Therefore, connecting
stones, which strives toward a small number of large groups, is generally a good
idea. The fourth principle is directly derived from normal Go, in which eyes are
the essential ingredients for building living shapes. In Ponnuki-Go living shapes
are only captured after one player has run out of alternative moves and is thus
forced to fill his own eyes.

Since the evaluation function is used in tree search, and thus is called at many
leaves, speed is essential. Therefore our implementation uses bit-boards for fast
computation of the board features. Instead of calculating individual liberties per
string, the sum of liberties is directly calculated for the full board. Territory
is estimated by a weighted sum of the number of first-, second- and third-order
liberties. (Liberties of order n are empty intersections at a Manhattan distance n
from the stones). Liberties of higher order are not used since they appeared to slow
down the evaluation without a significant contribution to the quality (especially
on small boards). Since the exact size of the territory becomes quite meaningless
when the difference between both sides is large the value can be clipped. (For
solving the small boards we used a maximum difference of 3 points.)

Connections and eyes are more costly features to calculate than the liberties.
Fortunately there is a trick that combines an estimate of the two in one cheaply
computable number: the Euler number [7]. The Euler number of a binary image,
is the number of objects minus the number of holes in those objects. Minimizing
the Euler number thus connects stones as well as creates eyes. Since the Euler
number can be computed per two rows using a lookup table, only a small number
of operations is needed.

4 Experimental results

This section presents results obtained on a Pentium III 1.0 GHz computer, using
a transposition table with 22° double entries. We discuss: (1) small board solu-
tions, (2) the impact of search enhancements, and (3) the power of our evaluation
function.

4.1 Small board solutions

Our program solved the empty square boards up to 5 x 5. Table 1 shows the
winner, the depth (in plies) of the shortest solution, the number of nodes, and
the time (in seconds) needed to find the solution as well as the effective branching



Figure 1: Solution for the 4 x 4 board. Figure 2: Solution for the 5 x 5 board.

2x2 3x3 4x4 5x5 6 x6
Winner \W% B w B ?
Depth 4 7 14 19 > 23
Nodes 68 | 1.7x10% | 5.0x 10% | 2.4 x 10% | > 10'?
Time (s) 0 0 1 395 > 106
beyys 2.9 2.9 2.6 2.8 ?

Table 1: Solving small empty boards.

factor for each board. In the figures 1 and 2 the principal variations are shown for
the solutions of the 4 x 4 and 5 x 5 board.

We observed that small square boards with an even number of intersections
(2 x 2 and 4 x 4) are won by the second player on zugzwang (after a sequence
of moves that nearly fills the entire board the first player is forced to weaken
his position because passing is not allowed). The boards with an odd number of
intersections (3 x 3 and 5 x 5) are won by the first player, who uses the initiative
to take control of the centre and dominate the board. It is known that in many
board games the initiative is a clear advantage when the board is sufficiently large
[16]. It is therefore an interesting question whether 6 x 6 is won by the first or the
second player. We ran our search on the empty 6 x 6 board for a few weeks, until
a power failure crashed our machine. The results indicated that the solution is at
least 24 ply deep.

Since solving the empty 6 x 6 board turned out a bit too difficult, we tried
making the first few moves by hand. The first four moves are normally played
in the centre (for the reason of controlling most territory). Normally this leads
to the stable centre of figure 3. An alternative starting position is the crosscut
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Figure 3: Stable starting position. Figure 4: Crosscut starting position.



Figure 5: Solution for 6 x 6 starting

with a stable centre.

Figure 6: Solution for 6 x 6 starting
with a crosscut.

Stable Crosscut
Winner B B
Depth 26 (+5) 15 (+4)
Nodes 4.0 x 10'* | 1.0 x 108
Time (s) | 8.3 x 10° 185
besy 2.8 3.4

Table 2: Solutions for 6 x 6 with initial stones in the centre.

shown in figure 4. The crosscut creates an unstable centre with many forcing
moves. Though the position is inferior to the stable centre, when reached from the
empty board, it is generally considered an interesting starting position for teaching
beginners (especially on larger boards).

Recently Cazenave [4] solved Ponnuki-Go on 6 x 6 starting with a crosscut
in the centre. His Gradual Abstract Proof Search (GAPS) algorithm, which is
an interesting combination of alpha-beta with a clever threat-extension scheme,
proved a win at depth 17 in around 10 minutes. Cazenave concluded that a plain
alpha-beta would spend years to solve this problem. We tested our algorithm on
the same problem and found the shortest win at depth 15 in a comparable time
frame. Figure 6 shows our solution for 6 x 6 with a crosscut. After implementing
our selection of search enhancements into GAPS Cazenave was able to prove the
win at depth 15 in 26 seconds on an Athlon 1.7 GHz [5, 6].

Unlike the crosscut, we were not able to find quick solutions for the stable
centre (figure 3). (Estimates are that solving this position directly would have
required around a month of computation time.) We did however prove that black
wins this position by manually playing the first move. The solution is shown in
figure 5. The stones without numbers were placed manually, the rest was found by
our program. Details of this solution are shown in table 2. A number of alternative
starting moves were also tested, all leading to a win for black at the same depth,
thus indicating that if the first 4 moves in the centre are correct the solution of
the empty 6 X 6 board is a win in 31 by the first player. This supports the idea
that initiative takes over at 6 x 6.



4.2 The impact of search enhancements

The performance of the search enhancements was measured by comparing the
number of nodes searched with all enhancements to that of the search with one
enhancement left out, on the task of solving the various board sizes. Results are
given in table 3. It is shown that on larger boards, with deeper searches, the
enhancements become increasingly effective. The killer moves on the 4 x 4 board
are an exception. The reason may be the relatively deep and narrow path leading
to a win for the second player, resulting in a poor generalization of the killers to
other parts of the tree.

|3x3 | 4x4]| 5x5 |

Transposition tables 2% | 98% | >99%
Killer moves 19% | -6% | 81%
History heuristic 6% | 29% | 86%

Enhanced Transposition Cutoffs | 0% 6% 28%

Table 3: Reduction of nodes by the search enhancements.

4.3 The power of our evaluation function

The evaluation function was compared to the standard three-valued approach for
solving small trees. Usually an evaluation function with a minimal range of values
generates a large number of beta-cutoffs, and is therefore more efficient for solving
small problems than the more fine-grained heuristic approaches that are needed
to play on larger boards. In contrast, the results given in table 4 indicate that
our heuristic evaluation function outperforms the minimal approach for solving
Ponnuki-Go. The reason probably lies in the move ordering of which efficiency
increases with the information provided by our evaluation function.

Table 4 further shows that our heuristic evaluation function is quite fast. Av-
eraged over all nodes it requires only around 4% more time than the three-valued
approach (which is always calculated). Even if we take into account that roughly
70% of all nodes are actually not directly evaluated (due to the fact that they rep-
resent illegal positions, final positions, transpositions, or are just internal nodes)
this still amounts to a pure evaluation speed of roughly 5,000,000 nodes per second.
Comparing this to the over-all speed of about 600,000 nodes per second indicates
that there is still significant room for adding knowledge to the evaluation function.

3x3 4x4 55
Evaluation function | nodes | time | nodes | time | nodes | time (s)
Heuristic 1.7 x 103 0 5.0 x 10° 1 2.4 x 108 395
Win/unknown/loss | 1.7 x 103 0 8.0 x 108 1 6.1 x 108 968

Table 4: Performance of the evaluation function.




5 Performance on larger boards

We tested our program against Rainer Schiitze’s freeware program “AtariGo 1.0”
[14]. This program plays on the 10 x 10 board with a choice of three initial starting
positions, of which one is the crosscut in the centre. Our program was able to
win most games, but occasionally lost when stones were trapped in a ladder. The
reason for the loss was that our program used a fixed depth. It did not include any
means of extending ladders (which is not essential for solving the small boards).
After making an ad-hoc implementation to extend simple ladders our program
convincingly won all games against “AtariGo 1.0”.

We tested our program against some human players too (on the empty 9 x 9
board). In close combat it was sometimes able to defeat reasonably strong amateur
Go players, including a retired Chinese first dan. Despite of this, most stronger
players were able to win easily by playing quiet territorial games.

6 Conclusions and future work

We solved Ponnuki-Go on the 3 x 3, 4 x4, 5 x 5 and some non-empty 6 x 6 boards.
These results were obtained by a combination of standard search enhancements
together with a novel evaluation function.

Cazenave and our group both solved 6 x 6 with a crosscut using different tech-
niques. Combining our selection of search enhancements with Cazenave’s GAPS
can improve the performance even further. The next challenges in Ponnuki-Go
are: solving the empty 6 x 6 board and solving the 8 x 8 board starting with a
crosscut in the centre.

Future work

In the experiments it became evident that search extensions for ladders are es-
sential for strong play on the larger boards. Future work will therefore focus on
selective search-extensions.

Since capturing stones is an important sub-goal in the game of Go, we will test
our search and evaluation function in a full Go-playing program. We expect that
good results can be obtained for capture, life/death and connection problems.
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