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Abstract

In complex real-world pattern recognition problems, like image-recognition, many difficulties
arise that are directly related to the high dimensionality of the problem. To make problems trac-
table, feature extraction methods are needed for reducing dimensionality whilst preserving the
relevant information.

Classical linear feature extraction methods have been shown effective for many simple problems.
However, several problems exist in which the linear methods fail. Furthermore, we cannot ex-
pect linear methods to function optimal for non-linear problems.

In this report a new training method for supervised and unsupervised feature extraction with
diabolo networks is presented which can improve performance, for classification, compared to
the classical feature extraction methods such as statistical discriminant analysis and principal
component analysis.

Principal Component Analysis is an unsupervised linear feature extraction method that aims at
preserving the maximum amount of variance. In literature a target based training method was
found for diabolo networks which can be used as a non-linear extension to the Principal Compo-
nent Analysis. In this report a method for initialising training of such a network is presented which
can improve performance and training time.

In this report a new target based training method is presented, for artificial neural diabolo net-
works, which produces a mapping comparable to Fisher’s linear discriminant mapping. Fisher’s
linear discriminant mapping is a well-known supervised linear feature extraction method that can
be used to decrease dimensionality while preserving class separability.

It is shown in experiments, on both artificial and real data, that linear and non-linear feature
extraction performed by diabolo networks can increase class separability, compared to classical
linear mapping methods.
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1 Introduction

Features are measurements, and can be thought of as knowledge about the world. This knowl-
edge can be used to make decisions. In pattern recognition this is called classification. In the case
that our some knowledge of the current ‘state of the world’, is contained in the form of 7 meas-
urements, we have a feature-vector in an n-dimensional feature-space. In the ideal case, deci-
sions are made based on the position of this point in that feature-space. Therefore a classifier is
partitioning the n-dimensional feature-space into regions associated with certain decisions. In the
case of simple problems with only a small number of relevant features many classifiers function
well. In most cases, however, this initial feature-space will not be efficient. It is not efficient since
features can be redundant, correlated or non-linearly related. Another problem for all distance-
based classifiers, is the loss of meaning for distances in high dimensional space. And in practical
applications the computational cost of calculations grows with the number of features.

To obtain more efficient feature-vectors it is necessary to reduce the dimensionality of the fea-
ture-space. Methods that do this are feature selection and feature extraction. In this report we
focus at feature extraction. Although feature selection is just a special case of feature extraction,
it can greatly decrease computational demand by discarding redundant features. An interesting
approach to feature selection, based on the analysis of weights in neural networks, which might
also be applied to our neural networks, can be found in[1].

In pattern recognition there is a wide range of methods for feature extraction such as principal
component analysis, statistical discriminant analysis, independent component analysis [2],
Kohonen’s self organising mappings [3] and Sammon’s mapping [4]. This report describes and
analyses feature extraction methods based on non-linear mapping of original features onto a
lower-dimensional subspace with feed-forward neural networks.

In this report a new supervised target based feature extraction method is presented which can
extract features from a broad range of class distributions. The reason for developing this new
feature extraction method is that classical linear feature extraction methods are only optimal for
the limited range of linear separable class distributions. In practical applications we cannot ex-
pect classes to be linear separable.

Although the problem of extracting information is more general, we focus our research at meth-
ods suitable for image databases. However, the same pattern recognition techniques can also be
applied to other kinds of data.

The rest of this report is organised as follows: first in the next section something is said about why
we started looking into feature extraction methods.

In chapter 2 some classical feature extraction methods are discussed together with a new non-
linear neural implementation for supervised feature extraction.

In chapter 3 a new method for initialising the diabolo network is described, which can increase
classification performance and decrease training time compared to random initialisations. For
completeness also a brief overview is given about the architecture and training methods for feed-



forward neural networks. Readers not familiar with neural networks should consider read-
ing the introduction to feed-forward neural networks in chapter 3 before reading chapter 2.

In chapter 4 some classifiers are described which are later used in chapter 5 to compare the
performance of feature extraction methods.

Next, in chapter 5 experiments are performed on artificial, 2-dimensional feature-spaces. Then
some experiments are shown for feature extraction for the recognition of handwritten numbers.
Finally some preliminary results are presented for feature extraction from real-world images.

Finally, in the last chapter, some conclusions are drawn.

1.1 Background

In today’s world where fast computers become largely available and the price of digital storage
falls rapidly there is an ever-increasing need for fast information retrieval. Most current database
systems can only handle text and numerical data, as more databases also include information in
the form of audio and visual data, new problems arise.

The current image database systems fall into one of two categories, text-based or content-based
systems.

In text based systems the image is assigned keywords that describe its content. At present it is

not yet possible to get a computer to assign keywords which are at the level of human percep-
tion. Therefore, text-based systems require human interaction to describe an image. This has
many drawbacks, for the process is slow, subjective and it does not allow for similarity retrieval.
The difficulty arises partly because it is not possible to guarantee that different people use the
same expressions for the same images. There is a deeper reason: the information sought is inher-
ently in the form of imagery, which a textual language is unable to express adequately, thus
making querying inefficient.

Though high level automatic keyword assignment is not yet possible, many algorithms exist that
are able to capture low-level properties of images such as texture, colour, shape and size. Sev-
eral current content-based systems base their image retrieval on indices coding such low-level
properties. Some well known commercial systems include IBM’s QBIC [5], Query By Image
Content, and Virage [6]. Although some interesting results have been obtained, using such low-
level features, most systems cannot handle very selective querying. To make selective querying
efficient, more advanced features will have to be devised. We hope to obtain such features by
applying advanced feature extraction methods to low-level features.
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2 Feature extraction

A feature extraction method or mapping method is a process that has as input an n-dimensional
feature-vectorx and as output an m-dimensional feature-vectory, m<n, which is a possibly non-
linear function of the elements inx. The goal of projecting the original n-dimensional feature-
vector onto an m-dimensional subspace is to get a more efficient combination of the original
features.

Mapping methods can either be linear or non-linear and supervised or unsupervised. The differ-
ence between supervised and unsupervised methods is whether or not class information is used
to find the optimal mapping. In the next sections methods for both supervised and unsupervised
mapping will be discussed, for the classical linear case as well as their non-linear neural counter-
parts.

Readers not familiar with feed-forward neural networks should consider reading the introduction
to feed-forward neural networks in chapter 3 before proceeding into chapter 2.

2.1 Unsupervised mapping methods

Unsupervised feature extraction is mapping without use of class labels. This means that the par-
titioning of the feature-space is unknown. Since for unsupervised mapping it is assumed that
distances between feature-vectors and positions in the original feature-space have meaning, all
methods try to preserve them in some way.

2.1.1 Principal Component Analysis

The most widely used linear mapping is the Principal Component Analysis (PCA), also known
as the Karhunen-Loéve transform. This unsupervised mapping method is a linear projection
method that assumes that the best mapping preserves the maximum amount of variance.

For n-dimensional column-vectorsx, linear feature extraction can be written as
—cT
y =F ' x > (1)
in whichy is an m-dimensional feature-vector and F is an n x m matrix build from m orthonormal
n-dimensional vectors. For simplicity we assume thatx is a zero-mean process so that a bias-

term can be left out. If the original n-dimensional feature-space is linearly reconstructed from the
extracted m-dimensional feature-vectors, we get the linear projection

X=Fy=FF x. )

A measure for the performance of the feature extraction, based on how well the original feature-
space can be reconstructed from the extracted features, can be written as



mse=H|x-X[*], (3)

in which E is the expectation operator. Since the vectors in/ are orthonormal this can be rewrit-
ten as

mse=E[x" x-x"FFTx]. 4)

Minimising (4) means rotating the orthonormal vectors in /'to the directions of largest variance.
Therefore PCA finds a projection onto a subspace spanned by the m largest eigenvectors of the
covariance matrix.

It is easily shown that a 3-layer feed-forward neural network with n inputs, m neurons in the
second layer and n neurons in the third layer, with all linear activation functions, is able to perform
a PCA mapping between the first and the second layer. Such neural networks are often called
auto-associative or diabolo networks. A schematic overview of a linear diabolo network is
shown in Figure 1.

n-dimensional n-dimensional
input layer output layer

m-dimensional

bottleneck |ayer

Figure 1, linear diabolo network

To learn to approximate a PCA mapping between the input and bottleneck layer, and a recon-
struction between the bottleneck and output layer, the output of the network is trained to ap-
proximate the input. In other words, the network is trained to reconstruct the input as well as
possible. After training, the network is split and the first half, between the input and the bottle-
neck layer, is used for extracting the new, m-dimensional, feature-vectors. If the targets are
trained to approximate the inputs using the mean-square-error criterion the network will find a
projection to the same m-dimensional subspace as found by normal PCA. The main difference
with normal PCA is that, in general, the extracted features will be non-orthogonal rotated ver-
sions of those found by normal PCA. Furthermore, it turns out that for practical applications the
normal PCA, which is non-iterative, is trained much faster.

2.1.2 Non-Linear Principal Component Analysis

An extension to the PCA network is the Non-Linear Principal Component Analysis (NLPCA)
network. The difference with linear PCA networks is that this network has extra hidden layers
between in- and output and the bottleneck-layer. The neurons in these extra hidden layers have
non-linear activation functions, which allow the network to find non-linear subspaces.



The smallest NLPCA network with non-linear compression and reconstruction, shown in Figure
2, uses five layers. The first and the fifth layer are the n inputs and outputs. The third layer has m
neurons, usually with linear activation functions. The neurons in the second and fourth layer
perform the non-linear transformation. The number of neurons in these layers depends on the
amount of non-linearity needed in compression and reconstruction of the data. After the network
is trained it is split and the first half, between the input and bottleneck layer, is used for extracting
the m-dimensional features.

hidden layer with non- hidden layer with non-
linear activation functions linear activation functions

n-dimensional @ m-dimensional @ n-dimensional
input layer / bottleneck layer output layer
(D
‘ Q
\ 7" \ 74
AN 9 @ A

Figure 2, Non-linear diabolo network
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An analysis of the NLPCA network was done by Malthouse [7]. He showed that NLPCA
networks can only find continuous non-self-intersecting subspaces. The continuity of the projec-
tion comes directly from the constraint that each neuron’s activation function is continuous. The
reason for this is that feed-forward neural networks are usually trained with some form of back-
propagation. Back-propagation requires a derivative of each activation function to propagate
the error observed at the end of the network back through the network. Other training-functions
such as re-enforced learning do not require back-propagation and may therefore overcome the
problem with continuity. Although re-enforced learning may overcome problems with continuity
we did not use it since training would be practically impossible, given the current speed of com-
puters. Furthermore it turns out that given enough neurons in the hidden layers the network is still
able to find good approximations of problematic subspaces. The second problem, with self-
intersecting subspaces is more fundamental and comes directly from the fact that one point in the
original feature-space cannot be projected back onto two points in the extracted feature-space.

The NLPCA network can be trained in the same way as the linear PCA-network, but this
method proves to be even more time consuming. One method to improve training speed is to
initialise the network with the optimal result of PCA. In the next chapter a method is described
for initialising the diabolo network with the linear projection obtained from PCA. Oja presented
another training method, which might also improve training speed. In [8] he suggested that the
five-layer network could be trained in 3 steps. The first step would be to maximise entropy in the
second layer. After that a linear PCA could be calculated between the second and the third layer.
Finally, if a reconstruction would be necessary, the last layers could be trained to approximate
the inputs. A third method, which can sometimes be employed to speed up the training, is to add
more hidden layers. In theory a network with one hidden layer can represent any continuous

0 10 0O



function and a network with 2 hidden layers can represent any function [9]. Although this
does not hold for a small number of neurons with continuous activation functions, it sug-
gests that 2 hidden layers for the extraction and 2 hidden layers for the reconstruction, are
better equipped to approximate discontinuous jumps or other complex shapes.

2.2 Supervised mapping methods

Supervised feature extraction is mapping with use of class examples; i.e. the partitioning of the
feature-space is known.

2.2.1 Criteria for class separability
When there are two or more classes, feature extraction is equivalent to the choice of the map-
ping, which is most effective for showing class separability. In statistical discriminant analysis,
within-class, between-class and mixture scatter matrices are used to formulate criteria of class
separability. The within-class scatter matrix shows the scatter of samplesx around their class
expected vector L, and is expressed by

k
S =3 REIY ~1)04 ~1)'], 5)

a between-class scatter matrix can be defined as

k
=3 Rl - W' (6)

the mixture scatter matrix is the covariance matrix of all samples regardless of their class assign-
ments, and is defined by

Sn = El(x-)(x- 1) 1=S, +S,.- (7)

P are the a priori probabilities of classesZ, & is the number of classes and [l is the mean of all
vectors regardless of class assignment.

In order to formulate criteria for class separability, we have to derive a number from the scatter-
matrices. In general the number should be larger when the between-class scatter is larger or the
within-class scatter is smaller. There are many ways to do this, and some typical criteria are the
following:

3 =t(ss's), ®)
3, =[s;"s|=[sl/Is], ©)
J3=tr(s)rr(sy), (10)



in which §, and §, are one of S, , S or S . Inour experiments we used S, for S, and S for
S.. Criteria/J, andJ, are invariant under any non-singular linear transformation, while crite-
rion J, is dependent on the coordinate system.

Although the above criteria for class-separability have been applied successfully to many prob-
lems in pattern recognition, it should be pointed out that they only concern second order statis-
tics, therefore more complex distributions will result in unreliable estimates of how well classes
are separable. In theory the best measure for class-separability is the performance of a Bayes
classifier. Therefore a mapping is optimal if the error made by a Bayes classifier is minimised.
However, since in most cases the probability-density functions are unknown, we cannot use the
Bayes classifier to calculate class-separability. Fortunately, we can use other classifiers as esti-
mates for the performance of a Bayes classifier, to calculate the performance of our feature
extraction methods. In chapter 4 some classifier are discussed that were used in our experi-
ments.

2.2.2 Fisher’s linear discriminant mapping
In[10] it is shown that the optimal linear solution with respect to (8) and (9) for representing the
n-dimensional feature-vectorsx in an m-dimensional linear subspace, m<n, is to projectx onto

the surface spanned by the m largest eigenvectors of S;'s . When S, is used for §;and S, is
used for S, this projection is known as Fisher’s linear discriminant mapping (FLD).

Linear FLD mapping is optimal for the projection of m+1 classes which have similar covariance
matrices. The reason for this is that the within-scatter is calculated by averaging the covariance
matrices of all classes. This means that the estimate is optimal for linear-separable class-distribu-
tions. If more then m+1 classes are used, FLD mapping remains optimal if the class-means span
an m dimensional subspace and the covariance matrices are equal.

Although linear FLD mapping has proven to be a useful tool in pattern recognition, it has some
drawbacks. The most important drawback is the criterion for separability, since it is only optimal
for linear separable classes and only invariant under non-singular linear transformations. Another
problem with FLD mapping is that it is limited to linear projections. Sometimes a solution is found
by the addition of polynomial features. However, if the number of input-features is large, the
number of polynomial features tends to explode, thus requiring an even larger number of training
samples which is computationally and practically unattractive. A third problem is that in the case
of a small number of samples, the within-class scatter matrix becomes singular. In our research
we used regularisation of the covariance matrices. Regularisation makes the covariance matrix
non-singular by simulating the addition of uncorrelated noise. However, there are other methods
for calculating the optimal discriminant vectors. For example in [11] a method for calculating
FLD mapping using rank decomposition is presented which might also help to overcome prob-
lems with small numbers of samples.



2.2.3 Supervised feature extraction by diabolo networks

Since diabolo networks can learn linear and non-linear PCA mapping by unsupervised training
of the output to approximate the input [7,8], we wonder if a similar training method, with targets
presented at the output of the network, could be applied to learn FLD mapping.

The first question, in training a diabolo network to approximate FLD mapping, is what targets
should be used. For the PCA network we chose the input vectors as targets. While this ap-
proach ensures that the global structure is preserved, it does not necessarily improve class sepa-
rability. Since we choose to train our diabolo networks with targets presented at the output of the
network, we cannot directly optimise class separability in the bottleneck layer. We can however
try to optimise class separability at the output of the network. If the reconstructed feature-space
is well separable the same should hold for the extracted features in the bottleneck layer, because
all information at the output is also present in the bottleneck. It should, however, be noted that the
job of actually separating the classes in the bottleneck layer might sometimes be harder due to
the non-linear transformations.

To enhance class separability we would like a contraction of each class. Ideally each class would
be projected in one unique point. Therefore, to train a diabolo network to find a good separable
mapping we use one unique point per class as the target.

Since neural networks are usually trained using the mean-square-error criterion, it is instructive
to see what this does to our scatter measures for class separability.

For given reconstructed feature-vectors X of classes i the performance criterion for train-
ing the diabolo network with targets 7 becomes

k
mse=zlpiﬂ|ti -% 1, (11)

in which P, is the a priori probability of class7 and k is the number of classes. Criterion (11) can
be rewritten as

k k k
mse= 5 REI% ~EIX1F1+ 3 RE(t ~EX1F1=u(S,(%)+ 3 RElt ~EIX]F], (12)

showing that minimising distances to one target per class is a trade-off between minimising within-
scatter and restoring the between-scatter associated with the target positions. This is a funda-
mental difference with normal FLD mapping, which is another trade-off between minimising
within-scatter and maximising between-scatter.

Although (12) tells us that class separability is increased, it does not directly tell us what targets
should be used. A criterion that could be optimised for the targets is the preservation of the
global structure in the reconstructed feature-space. To do this we can define a scatter measure,
similar to (5), showing the scatter of samples x, around their target vectorz as



K
Sw =lei E[(% —t)06 —t)"], (13)

in which P is the a priori probability of class and k is the number of classes.

It can easily be shown that the trace of'S, (13), which is the mean-square distance to targets, is
minimised by choosing the class means as targets. In most applications these targets perform
well. In some cases, however, they can create a problem since the distances between targets of
overlapping classes or classes having strange distributions could become small, thus resulting in
reduced class-separability for the extracted features.

To overcome problems for most class distributions a second scatter measure can be devised
which shows the scatter of the target vectors/ around the expected vector 4, regardless of class
assignment, as

k
S = 3 REL, ~ )G~ ], (14)

With these two scatter matrices targets can be calculated by maximisation of one of the measures
for class-separability (8),(9) or (10) usingS,, forS, and S, forsS,. Our choice for these measures
of class-separability is motivated by the fact that these criteria are also used for FLD mapping
and therefore might be useful for comparing NLFLD mapping to FLD mapping. In general
however there is a much wider variety of clustering techniques, optimising other criteria, that
could be applied to calculate targets.

Although it is shown that training with targets is possible, we would like to point out that there are
other ways to train a neural network to extract features. Recently, in [ 12] an interesting approach
to non-linear feature extraction with feed-forward neural networks was presented, based on
direct optimisation of (9) as a function of the network weights. Another interesting linear feature-
extraction method, is presented in [13]. This method is based on maximising the difference in
feature-vector lengths between different classes.



3 Network training

In this chapter training methods are discussed that can be applied to diabolo networks.

Since not all readers may be familiar with neural networks, first something is said about the
general architecture of feed-forward neural networks and the standard algorithms used to train
feed-forward neural networks. Readers familiar with neural network can skip section 3.1 and
3.2 and go directly to section 3.3, where a new initialisation method is presented which can
improve training speed and performance for diabolo networks.

3.1 Feed-forward Neural networks

Although some important features of feed-forward neural networks are discussed below, this
section is by no means a complete introduction to neural networks. For readers that want to
know more about neural networks an introduction to neural networks can be found in [ 14] or on
the Internet at: http://www.shef ac.uk/psychology/gurney/notes/contents. html.

A commonly used type of neural network is the feed-forward neural network. This network
consists of one input and one output layer and in between an arbitrary number of hidden layers.
Each layer is build out of an arbitrary number of neurons, which are connected to all the neurons
in the previous layer. There are no connections to neurons in the same layer. Furthermore, the
connections are only in one direction to the output layer (no feedback). A schematic interpreta-
tion of a typical feed-forward neural network is shown in Figure 3.

Hidden layer with m neuronswith
non-linear transfer functions

ninputs

Figure 3, typical feed-forward neural network with one hidden layer



Neurons are the basic building blocks of the neural network. The neuron has a large number
of input nodes, and one single output node. The output of a neuron can be described by

o=f(w'i+h), (15)

in which1 is a column-vector consisting of the values of the output nodes of the neurons in the
previous layer, w is a weight vector and b a bias. In our feed-forward neural networks each
neuron has its own set of weights and biases, the transfer functionfis the same for all neurons in
one layer. The most commonly used sigmoidal transfer function is the log sigmoid (logsig)

1
f(x)-m_ (16)

Another transfer function is the linear transfer function (purelin)
f(x)=x, (17)

Closely related to the sigmoid transfer function is the hyperbolic tangent sigmoid transfer function
(tansig)

2
f(x)=————-1
9 l+exp2x) > (18)
which main advantage over the logsig is that it is approximately linear around zero, therefore
allowing easy conversion from linear to non-linear transfer functions, if the data is scaled around
zero.

3.2 Training methods

3.2.1 Backpropagation

The most common algorithm used for training feed-forward neural networks is called error back-
propagation [ 14]. Error back-propagation is an example of supervised learning, not to be con-
fused with supervised feature-extraction, because at each step the network is adjusted by com-
paring the actual output with the desired output.

If all transfer functions have a derivative, an infinitely small change at the output of any neuron in
the network results in some linear response at the output of the network. It also works the other
way around. An infinitely small change at the output of the network can directly be related,
through linearisation, to a change at any neuron. Loosely said this means that we know how
much any neuron contributes to the output of the neural network. This property allows an error
observed at the end of the network, usually the mean-square error, to be distributed over all
neurons by propagating the error back through the network.



The simplest update for an arbitrary network weight w_can be written as
Aw =0 — (19)

in which o is a parameter determining the step length of each iteration. Criterion 19 is a form of
steepest descent minimisation, and therefore performs quite poor in most complex applications.
A better criterion for updating the network weights is

oE
AWi = _GB 67 + BAWprevious , (20)

in whicha is called the learning rate, and [3 is a momentum term that helps the network to escape
local minima. In most experiments gradient descent with momentum and adaptive learning was
used. This training function, implemented in Matlab’s neural network toolbox, minimises the
error observed at the end of the network using (20), while constantly changing the learning rate
o based on the change in performance due to the last network update.

Another training function is conjugate gradient back-propagation. This function calculates net-
work updates based on line-search in the direction of the gradient calculated with normal back-
propagation. Although this type of training often has faster convergence than gradient descent
with momentum and adaptive learning we found that it often gets stuck in local minima, where the
final performance is worse than that found by gradient descent with momentum and adaptive
learning.

For networks with only a small number of weights more complex training functions such as
Levenberg-Marquardt back-propagation, or Gauss-Newton algorithms can be used. For mod-
erate networks various quasi-Newton algorithms are efficient. In general the performance of
these algorithms is better than the gradient descent-like algorithms. However, due to the calcula-
tion of the Jacobian or Hessian matrices, their consumption of memory and time tends to explode
for networks with large numbers of neurons, thus making training practically impossible.

In general training of a neural network can be seen as searching for the lowest error in a high
dimensional error surface. Since all methods are local none of the above methods are guaranteed
to find the global minimum and only iterative approaches exist, which may get stuck in local

3.2.2 Validation and ending training

An important question in training a neural network is when to stop training. For small networks
with large numbers of different examples training can be stopped if either the performance goal
has been reached, or training hasn’t significantly improved for an arbitrary number of network
updates. If networks become large or the number of samples becomes small new problems
arise.

It is well known that, given enough neurons, feed-forward neural networks can fit a function
through any set of points. However, such a fit becomes meaningless due to loss of generalisation.



This behaviour is called over-training, and can be thought of as fitting noise. To prevent
over-training we need to estimate when training is useful and when it no longer brings any
generalised improvement. A way to do this is by the use of validation vectors. Validation
vectors are used to calculate the network’s performance without directly using them for
training. Training should be ended if the performance on validation vectors starts decreas-
ing. To get a good estimate of when training should be ended validation vectors should be
as independent as possible, this however means that, especially in the case of small numbers
of samples, not all information can be used for training. The choice of validation vectors
therefore always is a trade-off between getting enough training data and getting good stop-
criteria.

A normal training round is done in two steps. First subsets are selected for training and valida-
tion. Which are then used to train the network until some performance goal, decrease in valida-
tion performance or time-limit is reached. This type of training has the drawback that not all
information is used because some samples are left out for validation. In our experiments with only
limited numbers of samples, training and validation vectors were used from the same set. To be
able to use all examples while still being able to use validation vectors, training was done in more
rounds. For each training-round new subsets for training and validation were used, therefore
allowing the information in all training vectors to be used. Although this method may not be
optimal we find it to be a good solution when only a small number of training samples can be
spared for validation. Another and probably the best solution in the case of independent samples
is to estimate the maximum number of weight updates using a leave-one-out criterion. In practise
however, this is extremely time-consuming since a network has to be trained for each sample.

3.3 Improving network initialisation for diabolo networks

Before a diabolo network can be trained initial weight values have to be set, which can serve as
a starting-point in our search for a global minimum in the high dimensional error-surface. Usually
there are only two constraints to these initial weights. The first being that all data is mapped in a
unique way to each neuron, thus avoiding symmetry problems. The other constraint is that weights
are scaled to map data in regions of the sigmoid that have useful derivatives. Large weights
usually mean that the data is projected onto the flat part of the sigmoid, resulting in poor gradient
information. Therefore most neural networks are initialised with small pseudo-random values
scaled to project input samples around zero, at the input of neurons.

In complex problems networks tend to converge in local minima. Therefore, the initialisation and
the training algorithm determine the local minimum in which the network will end. To find a close
approximation of the global minimum, many training attempts may have to be made, thus making
training extremely time consuming. However, if some knowledge about the solution to the prob-
lem is available it can be used to find better starting-points. In the case of feature-extraction such
knowledge is available, and we have developed a method to use this knowledge in the initialisa-
tion of diabolo networks.



3.3.1 Initialization with optimal linear results

Training a non-linear diabolo network with small pseudo-random initialisations generally
takes quite a long time to reach an optimal performance and may get stuck in local minima.
Since good linear solutions to supervised and unsupervised feature-extraction are known
(see experiments in chapter 5) these can be used as a starting point for training the diabolo
networks.

This is done in five steps:

1. First a linear mapping and reconstruction is cal-
culated which results in a linear diabolo network
with one hidden bottleneck layer with m neurons.

2. For obtaining a five-layer diabolo network two
extra layers are added between the hidden layer
and the output layer. Initially these extra layers
use m neurons, with linear activation functions.
The weights and biases of the new layers are set
to perform a unity mapping, thus ensuring that
the output of the network remains the same. The
middle of the three m-dimensional layers becomes
the new bottleneck layer.

3. The m neurons in the layers around the bottle-
neck layer are copied a number of times and the
connection weights are divided by the number of i
copies so that the inputs to the next layers remain
the same.

4. The linear activation functions, of the neurons in
the layers around the bottleneck layer, are re-
placed with non-linear hyperbolic tangent sigmoid
activation functions. The weights and biases are
adjusted so that the data is approximately in the
linear part of the activation function. Figure 4, network initialisation

5. Finally to avoid symmetry problems in training,
due to identical neurons in the same layer, noise
is added to all weights and biases.

The now obtained diabolo network is trained further with standard back-propagation train-
ing algorithms, as described in section 3.2.



4 Classification

The need for classifiers arises from the need for good measures for comparing how well classes
are separable. Ideally this measure is the performance of a Bayes classifier. The measures for
class-separability, as defined in chapter 2, are not efficient since they are only optimal, in the
Bayesian sense, for linear separable distributions.

To gain insight in the quality of the extracted features, and for comparing mappings, classical
classification methods are used. Neural network classifiers are not used since they tend to suffer
from random initialisations therefore reducing reproducibility. Another practical problem is that
neural network classifiers suffer form long training time. The classifiers described in this section
are all implemented in the PRTOOLS toolbox [ 18], which can be used from Matlab [19].

All methods below are listed in order of computational complexity, more information about these
classifiers can be found in [15].

4.1 The nearest mean classifier

The nearest mean classifier (nmlc) is probably one of the simplest classifiers. It calculates the
Euclidean distance to all class-means and selects the class which class-mean is nearest. Obvi-
ously this is not the smartest way to do classification, and most classifiers will perform better. The
reason for using this classifier is its speed and simplicity.

4.2 The Mahalanobis classifier

The Mahalanobis classifier or normal densities based quadratic classifier (nqc) is a classifier,
which assumes quadratic class separability; 1.e. this classifier is a Bayes classifier for classes that
have normal distributions.

4.3 The k nearest neighbours classifier

The k nearest neighbours classifier (knnc) is a non-parametric classifier, this means that no as-
sumptions about the true class distributions are made. For a given sample that is to be classified
knnc assigns the class-label of the most occurring class among its k nearest neighbours. The
distance to neighbours is normally calculated using the Euclidean distance measure. For a large
numbers of training samples, and large k, the knnc approaches the performance of the Bayes
classifier.

A drawback of the knnc is that, for high dimensional feature-spaces and large numbers of sam-
ples, testing becomes extremely time consuming. However, if only the first nearest neighbour is
used to classify samples (nnc), the computational burden remains acceptable, although the per-
formance will reduce towards that of a proportional classifier.
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5 Experiments

In this chapter some experiments with diabolo networks are shown.

In the first section experiments are shown with artificial feature-spaces. These experiments are
purely meant to increase understanding of what diabolo networks can and cannot do, related to
the several properties of the networks architecture, and compare diabolo networks with classical
linear mapping methods. 2-dimensional feature-spaces are ideal for this purpose because map-
pings can easily be visualised, thus making the problems more understandable.

In section 5.2 we look at feature extraction for the recognition of handwritten numbers. This
application is used to gain understanding of some of the problems that will arise for feature
extraction from high-dimensional feature-spaces.

In section 5.3 some preliminary results on image-feature extraction are presented.

5.1 Artificial 2-dimensional feature-spaces

In this section feature-extraction from some simple 2-dimensional class-distributions is visualised
for PCA, FLD, unsupervised non-linear mapping (NLPCA) and supervised non-linear mapping
(NLFLD). The first 3 experiments are shown for 2-class problems, then 3 experiments are
shown for the 3-class problem, finally 3 experiments are shown for classes on a circle.

Of course there is no concrete connection to specific real-world problems and therefore one
should not pay too much attention to the meaning of these features.

On all feature-spaces diabolo networks were trained with various compression and reconstruc-
tion architectures. The goal of these experiments is to show how mappings are influenced by non-
linearity in extraction and reconstruction, illustrate differences between supervised and unsuper-
vised methods and show the fundamental differences between supervised target based mapping
with diabolo networks and normal FLD mapping.

In the following results are discussed and some interesting phenomena are visualised. Contour-
plots are used to relate the extracted 1-dimensional features to the original 2-dimensional fea-
ture-space. These plots can be interpreted as height-maps of the original feature-space with the
height being the extracted feature at that position in the original feature-space. This means that
points on one contour line all share the same value for the extracted feature. For non-linear
mapping methods the extracted features were first ranked before using as ‘height’. This was
done to prevent scale problems with visualisation due to the non-linear transformation.
Some plots are shown with names like “2-8-1-4-2 mapping”. By this we mean that 1 feature
is extracted from a 2-dimensional featurespace using a layer with 8 neurons for extraction
and a layer with 4 neurons for reconstruction.

5.1.1 Two linear separable classes
Probably the most fundamental problem in pattern classification is the separation of two classes.
In this example features are extracted from two normally distributed classes with an offset
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perpendicular to the direction of largest variance. Here we expected PCA to fail because of
the relatively large variance in the worst separable direction, in figure 5 a contour-plot is
shown for unsupervised PCA mapping, the markers identify the members of the two classes
in the original feature-space, the contours identify equal values for the extracted features.
In figure 6 a similar contour-plot is shown for supervised FLD mapping.
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Figure 5, PCA Figure 6, F1.D

It is clearly shown that the class information used by FLLD mapping results in optimal fea-
ture-extraction. Since the features extracted with linear FLD mapping are already optimal
the result remains essentially the same for non-linear diabolo networks; it is however inter-
esting to see what features are extracted by unsupervised NLPCA mapping. In our experi-
ments the small networks didn’t learn anything more than normal PCA, the large networks
however found some more complex curves, minimising distances to the original samples.
In figure 7 a contour-plot is shown of unsupervised feature-extraction with a neural net-
work with 8 neurons for extraction and 8 neurons for reconstruction. Although the ex-
tracted features are usable for classification the result clearly remains suboptimal.

Figure 7, NLPCA with PCA ini- Figure 8, NLPCA with inversePCA
tialisation initialisation

In this example problems arise due to the initialisation with PCA, which as shown above
clearly doesn’t help in identifying the different classes. To see if other solutions could be
obtained by different initialisation, a second network was trained but now initialised with
the worst PCA Feature, i.e. mapping in the direction of smallest variance, the result is
shown in figure 8. This example clearly shows that linear mappings are not always the best
starting point, especially if no class-information is used.
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5.1.2 Highleyman classes

Highleyman classes are constructed of two normal distributed classes with a large differ-
ence between the direction of largest variance and the direction of smallest variance. The
directions of largest variance, of the two classes, are perpendicular. Since the covariance
matrices of both classes are quite different, linear methods are expected to function worse
than optimal, this is shown for FLD mapping in figure 9. The result clearly is suboptimal,
for classification, since a projection on any one of the axes would have performed better. In

this experiment target-trained linear diabolo networks find exactly the same feature-space
as the normal linear mappings.
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For this example nearest neighbour classification errors (nnc) are around 24% for both the
PCA and the FLD mapping.

Non-linear methods perform better. The features extracted with various NLPCA networks
achieved between 11% and 20% nnc-errors, while the errors for NLFLD went down to almost

7%. An example of NLFLD-mapping with 8 neurons for extraction, and 8 neurons for recon-
struction, is shown in figure 11.

Another nice example is the mapping learned by a diabolo-network with only a non-linear re-

construction layer. This mapping, shown in figure 12, is the optimal linear mapping for classifica-
tion with a Bayes-classifier.
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Figure 11, NLFLD, non-linear Figure 12, linear extraction with
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5.1.3 Non-overlapping banana classes

Another standard 2-class problem is the separation of 2 non-overlapping banana-shaped classes.
Since the classes are non-overlapping theoretically classifiers should, when given enough exam-
ples, be able to achieve complete separability. However, since the boundary is non-linear, only
non-linear feature extraction methods are able to do the job perfectly.

In all experiments the nnc-errors on linearly extracted features were around 30%. As was to be
expected the non-linear classifiers performed better, however only the supervised non-linear
feature extraction methods performed near optimal, which makes sense because if class infor-
mation is discarded, for this example, all information about the structure is lost.
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Figure 15, 4 non-linear neurons Figure 16, 8 non-linear neurons

It is interesting to see what happens to the extracted feature-space as we increase non-
linearity. In figure 13 a contour-plot is shown for a pure linear mapping. In figure 14, 15
and 16 contour-plots are shown for non-linear mappings with respectively two, four and
eight neurons in the hidden layer. It is shown that more neurons increase performance by
more closely approximating the class boundaries.

In this example all networks were trained without non-linear reconstruction. It was experimen-
tally shown that non-linear reconstruction does not make any significant difference for this 2-
dimensional 2-class problem.

5.1.4 Linear separable 3-class problem

In the next experiment feature-extraction is presented for a typical, linear separable, three class
problems. Since all three class-means are on a line and all classes have the same orientation, this
feature-space allows optimal extraction for both standard FLD and linear diabolo networks.
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In figure17 the mapping learned by a linear diabolo network is shown. Standard FLD finds
exactly the same mapping. PCA mapping, shown in figure 18, clearly demonstrates the
advantage of using class-information.
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5.1.5 Linear separable 3-class problem with shifted class

In this experiment one of the classes from the last experiment has shifted to the left, therefore the
class means are no longer on a line. In this case standard FLD is expected to provide different
solutions than its target-based linear counterpart. The reason for this is the difference between
restoring between-class scatter and maximising it. Due to the linear reconstruction the diabolo
network cannot completely restore between scatter, therefore forcing a trade-off with minimising
within scatter.
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Figure 19, FL.D Mapping Figure 20, linear diabolo network

To illustrate the differences, normal FLLD map-
ping is shown in figure 19. The supervised map-
ping learned by a linear diabolo network is shown )
in figure 20. Due to the impossibility to fit a C e BN R s
straight line through the targets, which are shown
by the black dots, the linear diabolo network can-
not learn optimal feature extraction. Linear fea- R € S U
ture extraction with non-linear reconstruction |
does not suffer from this problem. This is illus-
trated in figure 21, where the mapping of a Figure 21, supervised linear map-
diabolo network with linear extraction and two ping with non-linear reconstruc-
non-linear neurons for reconstruction is shown. tion
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5.1.6 High triangle

In this experiment three normally distributed classes are used that are on the corners of an
imaginary triangle, which has two equal long sides and one shorter. In figure 22 the FLD
mapping is visualised, which clearly demonstrates the fact that standard FLD mapping is
only optimal if the number of classes is not more then one larger then the dimensionality of
the extracted feature-space. Similar problems arise for linear diabolo networks, non-linear
networks, however, do not directly suffer from the number of classes. A near optimal linear
extraction can already be found with only 2 non-linear neurons used for reconstruction.
This good linear mapping is shown in figure 23, the nnc error for this mapping is only 14%
where standard FLD leaves us with 34% error.

Figure 23, supervised non-linear
reconstruction,

Figure 24, supervised non-linear Figure 25, unsupervised non-linear
extraction and reconstruction extraction and reconstruction

If non-linear extraction and reconstruction are allowed, feature-extraction by a small diabolo
network with 2 neurons for extraction and 2 for reconstruction, shown in figure 24, results in only
3% nnc-errors on the extracted features. Ifthe same network is trained without class information
the nnc-error drops to 5%. The associated NLPCA mapping, shown in figure 25, clearly dem-
onstrates that class information is not always needed to achieve near-optimal performance.

5.1.7 Half circle

In the next three experiments, feature-extraction is shown for classes on a circle. This is interest-
ing because a circle is self-intersecting, and therefore theoretically cannot completely be de-
scribed by a continuous feed-forward diabolo network. The experiments are presented in order
of non-linearity of both feature-spaces and mapping methods.
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To start of easy, mappings were trained for classes on one half of the circle. In figure 26 and
27 the normal PCA and FLD mappings are shown which were used to initialise the net-
works.
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Figure 28, unsupervised 2-2-1-2-2 Figure 29, supervised 2-2-1-2-2
mapping mapping

Figure 30, unsupervised Figure 31, supervised
2-2-2-1-2-2-2 mapping 2-2-2-1-2-2-2 mapping

Figure 32, unsupervised Figure 33, supervised
2-4-4-1-4-4-2 mapping 2-4-4-1-4-4-2 mapping
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In figure 28, 30 and 32 NLPCA mappings are shown in order of network complexity. It is
interesting to compare these mappings with their supervised counterparts. In figure 29, 31
and 33 the mappings of the same networks are visualised, for supervised training with one
target per class. In this experiment NLPCA seems to preserve more global structure out-
side the classes than NLFLD.

5.1.8 3/4 circle

In this experiment we increased the need for non-linearity by adding two classes in the third
quadrant of the circle, used in the last experiment. To see how the different mapping methods
react to the extra classes and non-linearity 2 mappings are shown in figure 34 and 35, for a
diabolo network with only two neurons. Similar diabolo networks now with 8 neurons for ex-
traction and reconstruction were trained; the results are shown in figure 36 and 37.

Figure 34, unsupervised 2-2-1-2-2 Figure 35, supervised 2-2-1-2-2
mapping, mapping

)
5 %go

Figure 36, unsupervised 2-8-1-8-2 Figure 37, supervised 2-8-1-8-2
mapping mapping

We clearly see that more neurons increase performance for the NLPCA mapping, for the
supervised NLFLD the performance also increases but at the same time some loss of gen-
eralisation, outside the classes, occurs.

0 28 0O



5.1.9 Full circle

Finally two more classes were added in the fourth quadrant of the circle. Typical NLPCA
and NLFLD mappings for this feature-space are shown in figure 38 and 39. Both networks
used four neurons for extraction and reconstruction.

Figure 38, unsupervised non-linear Figure 39, supervised non-linear
mapping mapping

It is interesting to see that both networks have two opposite phase-shifts along the radius of
the circle. In our experiments we found that these double phase-shifts more often occur
supervised non-linear mappings than in for unsupervised mappings. This may be related to
the fact that reconstruction of only 8 different targets can be done in a more discontinuous
way than the reconstruction of all inputs.

Another nice mapping learned by a diabolo network with 2 layers of 8 neurons for extraction and
2 layers of 8 neurons for reconstruction is shown in figure 40. Here we see that although the
diabolo network will never be able to completely reconstruct the circle, it is still able to find a
good approximation with only one phase jump.

Figure 40, unsupervised, more Figure 41, supervised, more non-
non-linear mapping linear mapping
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5.2 Nistdigs, mapping of handwritten numbers

In this section a real-world application in the form of feature-extraction from handwritten num-
bers is used to investigate feature extraction by diabolo networks.

The dataset used in this section is nistdigs; Dick de Ridder constructed it from the NIST-data-
base for his graduation [16]. Nistdigs contains 2000 16x16 grey-value-images of handwritten
numbers (200 per class).

In the following experiments different feature-extraction methods are compared for extracting a
small number of features from the original images. To do this we treat the 16x16 images as 256
dimensional feature-vectors. With these 256 dimensional feature-vectors diabolo networks can
be trained to extract, and reconstruct the original feature-space.

5.2.1 The dataset

Although feature extraction can be performed directly on the 256 dimensional features, this
proves to be extremely time-consuming. To speed up experiments a new dataset was created
consisting of the first 32 KL-features of the original images; i.e. the new features are the first 32
principal components. Although our choice for 32 features is just an arbitrary number, we can
assume this to be a fair choice since it linearly preserves 85% of the variance in the original
images.

Before the 32 KL-features were extracted first a normalisation was done on all images. The
images were normalised by first clipping the darkest and lightest 10% of the pixels. Then the
mean gray values was subtracted. Finally the gray values were divided by the standard deviation.

The dataset was split to use 150 samples per class for learning and 50 samples per class for
testing. Although better classification results can be obtained using all the samples we did not do
this since our aim is to compare mapping methods and not directly achieve the smallest classifi-
cation error. Furthermore it should be noted that the test-samples were not used to estimate the
mapping for extracting the 32 KL-features.

5.2.2 Effect of dimensionality on different network architectures

In this experiment the effect of dimensionality of the extracted feature-space, on different net-
work architectures was investigated. All networks were trained using gradient descent with mo-
mentum and adaptive learning training. The maximum number of network updates was 5000
epochs. For the supervised mappings targets were used that optimise (8). On all extracted fea-
ture-spaces classifiers were trained on the learn-set and tested on the test-set. In figure 42 plots
are shown relating the nearest neighbour classification error to the dimensionality of the extracted
features for different linear mapping methods. In figure 43 and figure 44 similar plots are shown
for respectively unsupervised and supervised mappings. The numbers in the legend are the mul-
tiplication factors of the hidden layers of the diabolo networks, nlfld8-8-1-8-8 for instance means
that the networks has 2 layers for non-linear extraction and 2 layers for non-linear reconstruc-
tion, all with 8 times more neurons than the bottleneck layer.
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Figure 42, nnc-errors for linearly extracted features
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Figure 44, supervised feature extraction
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For this application, using a larger bottleneck, results in a lower classification error on
independent test samples. The plots in figure 42 clearly show that, for this application,
there is little difference in performance between linear diabolo networks and normal FLD
mapping. Furthermore, it is shown that, especially for a small bottleneck, dimensionality
has larger influence on supervised mapping than unsupervised mapping. Therefore to illus-
trate differences between the mappings the dimensionality of the extracted feature-space
should not be too high.

It should be noted that the above results are derived from one realisation per network architec-
ture. Since the initialisation is partly random these results may change for other realisations.

5.2.3 Initialisation

Aninteresting question is how our initialisation influences the end-result after training the diabolo
network. From various experiments we found that data scaled to the linear region of the hyper-
bolic tangent sigmoid scaled with a standard deviation of 1.5 combined with noise added to the
weights with a standard deviation of half the average absolute weight value, gave good results.
To give an idea of how these parameters effect the end result for classification, four different
initialisations were tested several times. The results are shown in Table 1. These results are
obtained from 23 different training rounds of a diabolo network with 75 neurons in one hidden
layer for compression, a 5 dimensional bottleneck and 50 neurons for reconstruction. The
networks were trained with gradient descent with momentum and adaptive learning for a
maximum number of 5000 network updates. In the first column the initialisation method is
shown. The first initialisation is the optimal initialisation used in most experiments, the next
two are variations with respectively small added noise and small non-linear scaling. The
fourth initialisation is a random initialisation implemented in Matlab’s function “newft”.

Onoise weights, Oscaled data nnc-error (%) Omoera (%0) | MiNumcaror (%) | MAX moaror (%)
05,15(FLD) 7.9 0.6 7.0 9.0
0.01,15(FLD) 8.7 0.8 7.4 10.4
0.5,0.03(FLD) 12.8 0.5 11.8 13.6
Matlab ( random ) 16.6 6 9.4 29.8

lable 1, effect of network initialisation with linear mapping

It is clearly shown that for this problem linear FLD initialisation provides a good start.
Furthermore we see by the small standard deviation of the observed errors, shown in the
third column, that the end-result is much more robust then Matlab’s random initialisation.

5.2.4 Number of neurons
In this experiment we try to visualise the effect of the number of neurons used for extraction and
reconstruction on the quality of the extracted feature-space.

In figure 45 a surface-plot is shown of the nearest neighbour classification error related to the
number of neurons used for compression and reconstruction through a 5-dimensional bottleneck
layer. The nnc-errors in this plot, represented by the colour and the heights, are an average of
two realisations per network architecture. The average difference between the two realisa-
tions was less than 3% of the plotted error. Similar plots have been made for the nearest
mean classifier and the Mahalanobis classifier, which show roughly the same behaviour.
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Figure 45, nnc error-surface of extracted 5d features for different numbers of neurons

It is shown that in the case of a 5 dimensional bottleneck layer the reconstruction is rela-
tively unimportant. To see if this is also true for a smaller bottleneck a second surface plot
was made for diabolo networks with a 2 dimensional bottleneck. The result, shown in
figure 46. Again this plot is an average of two realisations. The average difference was 9%
of the plotted errors. It is clearly shown that for smaller bottleneck layers the reconstruc-
tion becomes more important. This is explained by the fact that the reconstruction has to
learn a curved 2-dimensional surface through all the class-targets, which generally requires
more non-linearity for a low dimensional subspace.

nnc error

20

30 30 neurons for extraction
neurons for reconstruction

Figure 46, nnc error-surface of extracted 2d features for different numbers of neurons

5.2.5 Effect of class-size

If the number of examples per class becomes small it will generally be more difficult to
extract the correct features. To see how class-size effects quality of the extracted feature-
space several experiments were performed with several network architectures. In figure 47
an example is shown, for extraction of 5-dimensional features, relating the performance of
a nearest neighbour classifier (nnc) to the number of samples used for training the mapping.
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Figure 47, nnc error for 5d feature extraction with different samplesizes

It is clearly shown that feature extraction becomes difficult when the number of examples is
small. The reason for this is that due to the small number of training samples there just isn’t
enough data to make a reliable estimate of the class distributions. Directly related to this is
the problem of estimating covariance matrices for principal component analysis and Fish-
er’s linear discriminant analysis. For the diabolo network problems occur in the form of
over-training.

5.2.6 Improving performance by adding distorted copies

In the last section it was shown that small sample-sizes have a dramatic effect on the effective-
ness of the extracted feature-space for classification. A well-known solution to this problem for
classical linear mapping methods is regularisation (see also 2.2.2). Regularisation improves per-
formance by simulating a larger dataset created by the addition of noise to the original samples.
For classical linear mapping methods this can be done without any significant computational
effort by just increasing the diagonal elements of the covariance matrix by a small amount. For
diabolo networks such a nice trick does not exist, we can however make real distorted copies
and use them in training. Although this has the drawback that training will become slower, it
allows us to use a more advanced model of the variations that occur in natural data.

To see how adding distorted copies can improve feature extraction for the recognition of hand-
written numbers, extra samples were created. Applying rotation, scaling and the addition of
white noise to the original images created the distorted copies. The angles over which the images
were rotated where normally distributed with a standard deviation of 15 degrees. The scaling
parameter was also normally distributed with a standard deviation of 7,5% and the added noise
was normally distributed with a standard deviation of 30% of that observed in the original im-
ages. It should be pointed out that these values are chosen because they looked good and are
only meant as an example, other values and transformations may give better results, this, how-
ever, is beyond the scope of our research.

Several experiments were performed to compare mappings trained with distorted copies to
normal feature-extraction. In figure 48, plots are shown for the performance of supervised 2-
dimensional feature-extraction related to the number of original samples used in training. For this
example we used a mapping to 2-dimensional because, as shown in section 5.2.2, for low
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dimensionalities the differences between the different mapping methods tend to be larger.
Another advantage is that the 2-dimensional features allow for easy visual inspection of the
extracted feature-space. In figures 49 to 52 plots are shown for the 2-dimensional features

extracted from all test samples by the supervised mapping methods trained from 100 origi-
nal samples per class.
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Figure 48, nnc errors for 2d feature-extraction with distorted copies
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In general, well chosen distorted copies can increase performance for all mappings, espe-
cially when only a small number of samples is available. In this experiment the performance
increased more for the non-linear mappings then for the linear mappings. An explanation
for this may be that the linear mappings cannot adapt to rotation and scaling.
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5.2.7 Effect of non-linear reconstruction

In section 5.1 some examples were shown where non-linear reconstruction improved linear
feature extraction. To see if the linearly extracted FLD features could be improved by
applying diabolo networks, with non-linear reconstruction, several different networks were
trained. In figure 53 the classification results are shown related to the number of non-linear
reconstruction neurons, for different dimensionalities of the extracted feature-space. The
dotted lines are the average errors made by classical Fisher’s Linear Discriminant analysis.
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Figure 53, supervised linear extraction with non-linear reconstruction

It is shown that diabolo networks can improve linear feature extraction, for the recognition
of handwritten numbers. However, if the number of non-linear neurons is too small the
resulting mapping often performs worse than classical FLD. This is partly explained by the
fact that addition of random noise to the copied neurons may cause the network to end up
in worse local minima. However, the most important reason is the fundamental difference
between optimising class-separability through minimisation of distances to targets and di-
rect maximisation of criteria for class-separability.

5.2.8 Targets

Directly related to reconstruction and the architecture that is needed to do it, are the targets
themselves. In some early experiments much time was spent trying to find the best targets for
feature extraction. Several algorithms were designed for finding targets optimising several criteria
of class-separability. In our experiments, however, we found no fundamental differences, with
respect to classification, between criteria (8), (9) and (10), applied to the calculation of targets.

An early approach, for the selection of targets, was to randomly select another sample from the
same class as target for each input sample. Although this method did increase class separability
compared to PCA it performed much worse then the methods using one target per class.

More advanced clustering methods like k-means and k-centres were also tested, but results
found little or no change in performance for classification of handwritten numbers. Only for
image segmentation of complex classes we found some examples where clustering into
more targets per class might be useful.
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5.3 Some preliminary results on image-feature extraction

To handle a selective image database search, low-level properties in images can be calculated in
alocal neighbourhood. Algorithms that calculate such low-level properties are called filters. We
can think of a filter as an operation that performs a measurement on the local neighbourhood
around each pixel. If more filters are applied to an image each pixel has its own feature-vector,
built from all measurements, which can be used to classify the pixels, finally resulting in image
segmentation.

Many special purpose applications have been developed which apply problem specific filters.
For well-defined tasks a small number of'these filters often is sufficient to characterise different
image regions. However if the important features are not previously known, either because there
is no expert on the subject, because the problem is too complex, or because examples of the
objects are not given in advance, all one can do is apply more filters and search for a useful
combination.

In this section some preliminary results are discussed on image-feature extraction for application
in image database search. It should be emphasize that these experiments are only a first exercise
meant to illustrate where possible further research may be going. Although some results are
promising, much work still remains to be done.

5.3.1 Segmenting Lena

In this experiment a 256x256 image of Lena was used. The image is shown in figure 54. From
this image 4 Intensity, 9 DCT, 8 Gabor, 4 Wavelet and 12 Colour features were calculated in a
local 9x9 window around each pixel. From this initially 37 dimensional feature-space new fea-
tures were extracted using several mapping methods. In [17] some experiments were de-
scribed showing that diabolo networks can improve feature extraction, compared to stand-
ard PCA and FLD mapping, for classification of manually selected regions of the classes
skin, the hat, the boa, hair and the background. However, due to deadlines, the result was
only derived from a small number of realisations. Another problem was the selection of
learn- and test-regions. Since both regions spanned roughly the same amount of surface the
results did not reflect the performance that could be obtained from training on the whole
image. Furthermore, no pixels near class-boundaries were used, therefore possibly over-
simplifying the problem.

To obtain more reliable results new experiments were done. The main idea of these experiments
was to calculate a leave-one-out-like estimate for different test regions.

For each realisation the user-defined regions of the classes skin, the hat, the boa, hair and the
background, shown in figure 55, were clustered into learn, validation and test regions. The clus-
tering was done using the k-centres algorithm in PRTOOLS [ 18] for each class. For each reali-
sation 30 centres were used for the learn region, 3 centres were used for validation and one was
used for testing. After clustering, two 8-connected erosions were performed on learn, validation
and test regions, thus ensuring that the local 9x9 windows did not overlap. From the learn-
regions 200 samples per class were selected for learning 20 samples per class were selected for
validation. Training was ended after a maximum number of 10000 epochs or if the performance
on the validation set decreased over 100 epochs. If training had not reached 10000 epochs
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and the performance had not decreased for three consecutive training rounds it was re-
started with other samples from learn and validation sets.

"

Figure 54, Lena Figure 55, Labelled classes

In Table 2 the average classification errors are shown for different network architectures.
All networks used one non-linear layer for extraction and reconstruction with 6 times the
number of neurons in the bottleneck layer.

method nmiceror (%) | naceror (%) | nncerror (%)
PCA, 2d 54 46 49
NLPCA, 2d 43 41 37
FLD, 2d 26 19 25
NLFLD, 2d 13 13 19
PCA, 3d 46 30 31
NLPCA, 3d 38 26 26
FLD, 3d 18 15 18
NLFLD, 3d 14 11 12

Table 2, Average percentage of errors on test-regions for different realisations

The errors in Table 2 are an equal-weighted average for all classes. It is interesting to see
how these errors are divided among the five classes. In Table 3 the errors made by the
Mahalanobis classifier on the extracted 2-dimensional feature-vectors are shown for the
individual classes. To get good estimates the experiment was repeated several times, using
different learn and test regions, resulting in 95% certainty regions of less then 2% errors.
Similar results were obtained for other classifiers and mappings.

face/body hat boa hair background
PCA, 2d 71 32 34 44 48
NLPCA, 2d 63 26 22 48 48
FLD, 2d 34 11 4 5 43
NLFLD, 2d 19 11 5 6 23

lable 3, Average percentage of errors per class using the Mahalanobis classifier
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To give an idea of how the extracted features perform for image segmentation some typical
realisations are shown, for the different mapping methods, in figure 56 to 59. All images
were segmented using the Mahalanobis classifier. The reader should keep in mind that
these are just four realisations and the results may change for other initialisations and train-
ing samples.

Figure 56, unsupervised linear map- Figure 57, unsupervised non-linear
ping mapping

Figure 58, supervised linear mapping Figure 59, supervised non-linear
mapping

It is shown that non-linear feature-extraction improves classification results mainly by in-
creasing separability for the body and the background. These classes are probably more
difficult for linear mappings because respectively the body has little textural features that
are not also in the background and the background actually is a combination of more sub-
classes, thus making these classes less likely to be linearly separable.

5.3.2 Delft-images

In the last section, an approach to feature extraction for image segmentation was presented. To
see if this type of feature extraction could be applied for a large number of images a database
was created containing over 600 ‘real-world’ images of Delft.
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In some images classes, such as grass, air, water, trees & bushes, stone and wood, were
manually selected. Again using the same filters as applied to the segmentation of the Lena
image, new features were extracted using several mapping methods.

Initially our extracted features showed little generalisation to images that where not used in train-
ing. To get a better generalisation without having to go through the trouble of labelling more
images we came up with the idea of combining supervised and unsupervised training. Training a
diabolo network using both samples that should be mapped onto their class-assigned targets and
samples that are to be mapped onto themselves can do this. To see if performance could be
increased by combining methods, several networks were trained with different numbers of la-
belled and unlabelled samples.

In figure 60 plots are shown for the performance of the nearest neighbour classifier on independ-
ent test samples related to the number of supervised and unsupervised learn samples used in
training. All diabolo networks were trained to map the original 37 dimensional feature-vectors
onto a 7 dimensional subspace using 42 neurons in the hidden layers for extraction and recon-
struction. The bottleneck was 7 dimensional because this was the average of the two estimates of
the intrinsic dimensionality, calculated for a large number of samples from all images.
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Figure 60, effect of combining supervised and unsupervised samples on non-linear
mapping

It is shown that adding unlabelled samples can increase classifier performance on the ex-
tracted features. However, adding labelled samples is much more effective for increasing
classification performance then adding unlabelled samples. Therefore increasing the number
of labelled samples seems the appropriate choice. However, since manual labelling of im-
ages 1s extremely time-consuming we may not want to do this. A possible alternative may
be to use distorted copies, like in section 5.2.6. This however has not yet been tested for
large image databases.
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6 Conclusions and discussion

6.1 Conclusions

A new supervised feature extraction method has been designed which can effectively extract
features from a much broader range of class distributions than classical Fisher’s linear discrimi-
nant mapping. In general the reduction of dimensionality performed by non-linear mapping can
aid in improved speed and performance for all distance based classifiers.

A new method for network-weights initialisation has been developed which can be applied to
supervised and unsupervised diabolo networks. Experimentally we’ve shown network training
with this initialisation to be faster, more robust and less sensitive to local minima than standard
random initialisations.

In several experiments non-linear feature extraction methods were shown to outperform both
classical principal component analysis and statistical discriminant mapping. However, not only
non-linear feature extraction can be improved. Experimentally it was shown that linear feature
extraction could also be improved, compared to classical linear methods, by allowing non-linear
reconstruction of the original feature-space. The reason for this is that non-linear reconstruction
causes higher-order statistics of the extracted feature-space to be taken into account, therefor
preserving more information then classical linear reconstruction methods.

6.2 What remains to be done

Until now only a good comparison was made between classical feature extraction and feature
extraction performed by diabolo networks. There is, however, a much wider range of feature-
extraction methods such as self-organising mappings, Sammon’s mapping and independent com-
ponent analysis. It would for instance be interesting to see how self-organising mapping scales to
high dimensional problems compared to diabolo networks. Another interesting experiment would
be to compare subspaces found by linear and non-linear independent component analysis to
those found by diabolo networks.

In our experiments we found that if the network was given enough freedom the choice of targets
became relatively unimportant. If we do not care for preserving original spatial relations in the
reconstructed feature-space, the diabolo networks reconstruction architecture could be altered
to perform direct classification. It would be interesting to compare such a network’s generalising
capabilities, with respect to unknown classes, to a normal diabolo network that tries to preserve
spatial relationships.

Another remaining question is the choice for the number of neurons and hidden layers that should
be used. In general the degrees of freedom should be as low as possible, since each extra neuron
increases the computational complexity and the chance of over training. However aside from
some rough estimates for the intrinsic dimensionality most parameters still have to be tuned on a
trial and error basis.



Non-linear diabolo networks can extract good image features. However, if we want to
apply our feature extraction methods to large ‘real-world’ image-databases more work
needs to be done on increasing the number of learn samples. This can be done in an ex-
tremely time-consuming way by more manual labelling. However, if we can model class-
invariant transformations, this can be used to improve feature extraction by artificially in-
creasing the number of training samples. Furthermore, to decrease computational demands,
feature-selection methods should be applied to remove redundant initial features before
extracting more complex features.
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