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Abstract

This paper presents a study of several dedicated
Temporal-Difference (TD) learning algorithms for
deterministic zero-sum games of perfect information
such as the Game of Go. The algorithms include
TD(u) by Beal (2002), which separates good play
from bad play, TD-leaf(\) and TD-directed(A) by
Baxter et al. (1998), which exploit game tree search-
ing, and Baird’s residual algorithms (1995), for pre-
venting instability during training. We show that
dedicated TD learning algorithms provide faster
training and acquire more ‘genuine’ knowledge of
the game resulting in a significantly higher playing
strength than players trained by standard TD.

1 Introduction

Games have a number of properties that make
them an excellent environment for the appli-
cation of Temporal Difference (TD) Learning.
Game dynamics are usually clear and simple,
large numbers of trials can be generated in fast
and cheap ways, and yet games can give us a
very rich and complex learning environment.
However, TD learning does not take optimal ad-
vantage of the structure of deterministic perfect
information games like Chess and Go. Although
the properties of these games make it possi-
ble to use sophisticated reasoning (like minimax
search), TD learning only uses a stochastical
model of the environment. The question arises
whether adapting Temporal Difference Learning
algorithms to deal with the specifics of game-
play will improve learning performance.
Several adaptations to Temporal Difference
Learning for application in the game-playing
domain have been described. The TD-leaf()\)
algorithm (Baxter et al., 1998) focuses on us-
ing game-tree search with TD learning, the
TD(p) algorithm (Beal, 2002) deals with learn-
ing from suboptimal play, Baird’s residual algo-
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rithms (1995) prevent instability during train-
ing, and the RPROP algorithm (Riedmiller and
Braun, 1993) provides significantly faster train-
ing compared to standard network training al-
gorithms. In this paper we compare the per-
formance of these algorithms, and test them by
training a neural network for playing Go on a
small board against a weak opponent. To our
knowledge this is the first time that the perfor-
mance of TD(u) is compared to that of other
dedicated algorithms.

We will now introduce TD learning and the
adapted algorithms. Then our experimental
setup is described, followed by the results and
a short discussion of our findings.

2 Temporal-Difference Learning

This section presents a brief description of the
TD(A) algorithm (for more information see:
Sutton and Barto, 1998). Consider the case
of an agent learning a state evaluation func-
tion V'(s), predicting the sum of future rewards,
which should be maximised. At every time step
t, the agent visits a state s;, chooses an action,
and receives a reward r;. In the case of a 2-
player game, the action is the move to play, and
the next state depends upon the rules of the
game and the opponent’s move. Depending on
that action and the world’s dynamics, the agent
winds up in a next state sgyi.

For improving the predictions of V' (s) a quan-
tity called the A-return R} is defined as follows:

R} =(1-)) i At (V(3t+n) + i Tt+m> (1)

The A-return is commonly used to balance n-
step returns expressed in the forward view of
TD() (Sutton and Barto, 1998). The value of
A should be chosen between 0 and 1 because it



generally provides faster convergence than the
extreme cases of TD(0), which only looks at
the 1-step return, and TD(1), which is just the
Monte Carlo backup.

For learning the simple tabular case where
all possible states can be stored independently
(no generalisation) the value for a state is then
updated with a learning rate a according to:

AV (st) = a[Ry — V (s1)] (2)

For most interesting domains, which have a
large state space, independently storing V(s)
for all possible states is not an option. As an
alternative general function approximators are
used to approximate V (s) for all possible states.
For well-chosen representations this also pro-
vides generalisation to unseen states.

The function V' that is learned by TD()) is
a model of the world, telling us how much fu-
ture reward is to be expected in a state. In its
simplest form, this model does not contain an
explicit model of the opponent nor does it use
reasoning or tree searching. The adapted al-
gorithms we describe in this paper do contain
these kinds of functionality.

3 Temporal Difference Learning and
Game Tree Search

Baxter et al. (1998) describe two new TD learn-
ing variants, TD-directed(A) and TD-leaf(}),
for use with game tree search. Their results
show both algorithms to be more efficient for
training the KNIGHTCAP Chess-playing pro-
gram than standard TD()).

3.1 TD-directed())

TD-directed(A) uses minimax search to select
moves, and as such it can be viewed as TD())
with a policy that searches the gamespace. TD-
directed()\) is the most straight-forward way of
applying TD(\) when learning gameplay with
minimax search.

For TD-directed()), a minimax search is used
to guide play, but the evaluation and updating
of play is just like normal TD(A). It might seem
logical to use the minimax-value of a state as the
evaluation value for TD-directed(A), but this is
not the correct approach. The minimax-value
of the state s is the evaluation V of the leaf
node of its principal variation s,,. (The princi-
pal variation is the sequence of moves that the

program thinks represents best play for both
sides.) V(spy) is generally a more reliable pre-
diction than V(s). However, we cannot simply
replace V(s) by V(sp,) to compute the TD error
of equation (2) because the feature set of state s
does not match the feature set of state sp,. The
correct way to implement the TD-directed())
algorithm is therefore to use minimax search to
guide gameplay, but not for evaluating states.

3.2 TD-leaf())

TD-leaf(A\) not only uses search to guide game-
play, but learns and updates its values for the
leaf position of the principal variation, instead
of the state that the agent is in. It only con-
siders the principal variations. The leaf nodes
of the principal variations are the states that
are evaluated and also the states for which V
is updated. Whenever the principal variation
gets played, the two mechanisms evaluate and
update the same state. But whenever this is
not the case, the state for which V is updated
differs from the state observed in play.

4 Learning Gameplay with an
Imperfect Opponent

Standard TD learning does not use an explicit
model of the opponent. Instead, the opponent
is simply perceived as a part of the environ-
ment. In other words, the learning task is to
play against that particular opponent. But this
might not be what we intend to learn. What
we really desire is an evaluation function for
playing a certain game in general, against any
opponent. The problem here is that the TD-
algorithm is not optimising an evaluation func-
tion in the game-theoretical sense, but simply
to beat its current opponent. This becomes
an important problem especially when play-
ing against a small number of weak opponents
(which is usually the case in Computer Go).
As an example of the problems that can be
encountered when learning from an imperfect
opponent, suppose an agent is playing a game
and not doing very well. It has only a small
chance of winning. The agent then makes a
move, and according to the search it did, the
opponent’s best continuation would be move
m,, leading us to a leaf node with evaluation
V(spy). But the opponent unexpectedly plays
another move m), leading to another state s’
with V(s') > V(spy). Now if the opponent’s



move was a mistake, and the agent wins the
game, the positive return will be propagated
back throughout the game, past the bad move
m/. So the feedback the agent obtains is that it
was doing well even before the opponent made
its mistake. We want to prevent this kind of
learning of incorrect information from bad play.

4.1 TD(p)

The issue of learning from playing against an
imperfect opponent is addressed in a paper by
Beal (2002). He points out that when TD())
trains against a “bad” opponent, it will learn
to produce bad play, even if it was trained
to play well before. He describes a new algo-
rithm called TD(x), which should perform bet-
ter when learning from bad play. Since the de-
scription of the algorithm in the original article
contained some minor errors (Beal, 2003), we
describe it here in more detail.

TD(\) assumes that the differences between
the evaluations of successive states are caused
only by an imperfect evaluation function. As
Beal argues, this implicitly assumes that play is
perfect. In reality play is not perfect, and some
of the changes in the evaluation value during a
game come about because of mistakes made by
one of the players. TD(u) tries to separate the
changes due to bad play from the changes due
to a bad evaluation function.

TD(u) also adds the opponent to the learning
algorithm. Both sides of play are observed, and
the opponent is no longer thought of purely as
part of the environment. Instead, its moves are
evaluated too, taking into account not only the
states where one player is to move but also the
states that lie in between. In other words, when
it is Black’s move in state sy, it will be White’s
move in state s;41.

Whenever one of the players makes a move,
the evaluation change d; is observed, and an er-
ror e; is calculated:

d() = 0, dz = V(Sz) - V(Si_l) (3)

max(d;, 0
€= { min((d,-,())) )

if opponent played
if agent played

The equation for e; can be explained as fol-
lows. Both players try to maximise their profit.
Whenever a player makes a move that happens
to decrease the value of the board position for
that player, it is considered a mistake. The

amount of change is then stored in e;. On the
other hand, if it was a “good” move, the state
value will have increased or stayed the same.

Note that this does not only filter out bad
play from the opponent. When the player makes
an exploration move which happens to be bad,
then TD(u) reacts in the same way as it does
when the opponent makes a bad move.

Now, we use the values e; to calculate a cor-
rected n-step return al, with all the score drops
subtracted from it!. The formula for al is pre-
sented as a special case.

ai = V(s (5)

%
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Next, a sigmoid squashing function is applied to
at, yielding P}, which can be interpreted as the
probability of winning when in state ¢, as seen
from state 1.

Pt = N
Yol4ed

The update rule given by Beal is:

(7)

AV(s) =af(1—A)Tp L AN1p

(8)
_'_)\T*t*lP,lt _ Ptt]

To understand this equation, we note that for
the case of a task with finite length 7', equation
(1) can be written as:?

T—t—1

R} =(1-)) ( 3 A"—1R§">> +AT-LR,

n=1
(9)

So (8) is equivalent to (9) and (2), with the
difference that Rﬁ") and V(s;) are now substi-
tuted by respectively P! and P}.

The TD(p) algorithm uses the agent’s current
knowledge to judge gameplay from both sides.
Whenever a move is encountered that is consid-
ered to be sub-optimal, the corresponding drop
in V is subtracted from the n-step returns in

In the formulas in Beal’s paper, no rewards r; are
mentioned. They have been added here.
2This is shown in (Sutton and Barto, 1998), p.170



(5). According to Beal, this makes it possible
to learn from an opponent that plays poorly,
or even from random play. This suggests that
the algorithm would be better at learning what
moves are generally good.

In his paper, Beal tests his algorithm by
learning an evaluation function for chess from
random play. Although it shows some learning,
it is not clear from the paper just how well the
algorithm performs, and how much knowledge
it acquires. In this paper we compare its perfor-
mance with other TD learning algorithms and
try to make a stronger case about learning from
bad play by testing the agent’s knowledge after
training on two new tasks.

5 Experiments

We have compared the performance of various
adapted versions of the TD algorithms, applied
to training networks on a Go-playing task. The
game of Go has yet defied any attempt to cre-
ate a strong player. Conventional methods that
are successful with other games tend to per-
form poorly with Go. In particular, the prob-
lem of finding a good board evaluation function
is extremely difficult. Given the strong pattern-
matching component of the game, Neural Net-
works and Machine Learning become particu-
larly interesting for application in Go.

The combination of Neural Networks and TD
learning has been applied on Go with interesting
results (Schraudolph et al., 2000; Dahl, 2001).
Apparently it is possible to acquire Go knowl-
edge in these ways. However, training tends to
take a long time and can result in a strongly bi-
ased playing style (lacking ‘genuine’ Go knowl-
edge). This raises the question whether a dedi-
cated TD learning algorithm can provide better
performance. To answer this we have tested the
various algorithms on playing 5x5 Go against
WALLY, a weak Go-playing program. 5x5 is
the smallest board size for which the game is
still tactically interesting.® The game of Go is
very scalable, in the sense that its structure re-
mains very much the same with different board
sizes, and results obtained for small boards can
be quite relevant for use on bigger boards.

35x5 Go has recently been solved (van der Werf et
al., 2003). If the first move is played in the centre a
full-board win can be proven by a 22-ply deep search.
Other openings can require searches up to 40-ply deep,
and sometimes surprise even professional players.

5.1 Training the network

In our case, the evaluation function V'(s) is rep-
resented by a neural network. We used a fully-
connected MLP with 32 inputs, a single hidden
layer of 75 units and a single output. Input
features include: number of liberties for every
stone on the board (with a maximum of 5 lib-
erties and negative values for enemy stones),
the total number of liberties for all friendly
stones, the total number of liberties for all en-
emy stones, the number of friendly stones minus
the number of enemy stones on the board, the
number of stones on the edge, whether there
is a friendly group in atari, and whether there
is an enemy group in atari. After some experi-
mentation this combination of network architec-
ture and feature set was found to be sufficient
to learn the desired evaluation function. It is
probably possible to improve the network archi-
tecture by using symmetries or weight sharing,
but this is not our main concern.

During games rewards were given directly for
captured stones. At the end of each game re-
wards were given proportional to the total score
minus the captures already rewarded during the
game. Every game was started with 2 ran-
dom moves to ensure sufficient exploration of
the state space. This also made the task of
playing against WALLY more challenging. The
network could not learn to beat WALLY every
single game because some of the starting posi-
tions gave the agent too much disadvantage. As
another means of exploring the state space, an
e-greedy policy was used. This made the agent
choose a random exploration move a small frac-
tion € of the time.

If the randomisation was decreased at the end
of training, the network could be trained to beat
WALLY every time, regardless of being black or
white (black gets to play the first move). How-
ever, this turned out to be an undesirable kind
of overtraining. The network would learn a sin-
gle ‘trick’ to beat WALLY every time, but forget
all its ‘real’ knowledge, so performance against
GNUGO would go down. There is an impor-
tant trade-off here between obtaining maximal
performance on the current task, and acquir-
ing more general knowledge independent of the
current opponent.

While the TD learning algorithm gives us an
error value that can be used for updating the



Percentage of games won
o [o2] (2] ~ ~
(4]

T

@
T

Avg. number of stones won

-3
S

a
T

=)
T

=)
T

Percentage of games won

~
a

=)
T

a
T

il
T

o o o o N
S
T

S
T

I3
=}

0.2
— Rprop
— residual
— - residual - lambda

0.8 1 12
Number of games played

IS
)

I I
0.8 1 1.2
Number of games played

|
0 0.2 0.4
— - TD-Directed
— - TD-Leaf

— TD(mu)

o =4 N w &~ o
T

I I I I I I
8000 10000 12000 14000 16000 18000

Number of games played

o 2000 4000 6000
Figure 1: Comparison of NN training algorithms.
The top figure shows winning percentage, the bot-
tom figure shows average score. On the horizontal

axis is the number of games played.

network, this still leaves us with the choice of a
network training algorithm. Standard TD())
with backpropagation was found to be very
slow, taking in the order of 105 games to beat
WALLY. Instead we selected the RPROP algo-
rithm (Riedmiller and Braun, 1993), which gen-
erally converges faster, is well suited for complex
error surfaces, and has the advantage of not hav-
ing to optimise its parameters because it adapts
these automatically.

It has been shown that using TD learning
with neural networks can be unstable even with
very simple tasks. The reason for this is that,
unlike in a lookup table, states are not indepen-
dent. A possible solution to this problem has
been described in the form of the residual al-
gorithm (Baird, 1995). This algorithm was de-
signed specifically to prevent instability for the
combination of Neural Networks with TD learn-
ing. According to Baird, the residual algorithm
should only be used with TD(0), and it should
be expected to learn quite slowly. However, it
can be combined with other algorithms like TD-
leaf()\), as long as A is set to 0. Despite of this,
we also tested an adaptation of Baird’s algo-
rithm using TD(A) with A > 0, which we call
Residual-)\*. (We always used A = 0.5 unless
stated otherwise.)

The performance of the network training al-

4For a more elaborate description of these algorithms,
see (Baird, 1995) and (Ekker, 2003)
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Figure 2: Performance for three different TD-
learning algorithms, with the RPROP algorithm.
TD(p) clearly shows best performance.

gorithms (with TD(y)) is shown in Figure 1. It
is shown that Baird’s residual algorithm reaches
high winning percentages faster than RPROP,
which was selected for speed. This is a remark-
able result since Baird describes his algorithm
as being rather slow. Its average score (in stones
won) is significantly lower than RPROP, how-
ever. The Residual-A algorithm shows learn-
ing performance comparable to that of Baird’s
residual algorithm, but it reaches the highest
average score.

5.2 TD learning algorithms

We now proceed to the comparison of dedi-
cated Temporal Difference Learning algorithms.
Figures 2 and 3 show our results. Perfor-
mance is shown for three algorithms. The TD-
directed()) algorithm is just standard TD())
with a policy that does a two-ply minimax
search. TD-leaf(\) and TD(u) use the same
policy for choosing their moves, but use differ-
ent rules for updating the evaluation function.
Standard TD(A), using only a single-ply search,
performed very poorly and did not learn to de-
feat WALLY within a time comparable to the
other algorithms. Schraudolph (2000) describes
more successful learning with TD(\), but this
seems to be strongly related to using a more
sophisticated network architecture.

The performance differences between the TD-
algorithms are small but noticeable. TD(u)
performs best in combination with both neu-
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ral network training algorithms. It achieves the
best winning percentage and the highest av-
erage score. TD-leaf(\) does tend to learn a
bit faster than TD-directed(\) at the start, but
the difference is only very small. It might be
that the performance gain for TD-leaf()\) would
be larger when training is done with a deeper
search.

Although the networks learn to beat WALLY,
these figures do not tell us much about the
amount of Go knowledge that is acquired.
Therefore, after training, we used the trained
network on two other tasks to test how much
it had learned about Go. We let it play against
GNUGO, a stronger opponent, at its lowest level
and we let it score endpositions. Table 1 shows
the results.

A Chi square analysis of these figures gives
a p-value of 0.0005, indicating a high level of
significance, supporting our previous findings.

TD Algorithm % wins % correct

vs. GNUGO | classifications
TD-directed () 42 37
TD-leaf()) 44 45
TD(u) 49 58

Table 1: Performance of the network after train-
ing against WALLY on two other Go-related task.
The winning percentage against GNUGO and the
percentage of games correctly classified as wins or
losses are shown.

TD(u) again shows the best performance, fol-
lowed by TD-leaf(\). Apparently, some ’real’
Go knowledge has been learned, which is most
clearly shown by the 49% winning rate against
GNUGO, which is a much stronger opponent
than WALLY. This seems to support Beal’s
claim that TD(p) is better suited to learn ‘good’
information from a ‘bad’ opponent.

6 Discussion

We have shown that using dedicated Tem-
poral Difference Learning algorithms can im-
prove performance significantly. Using stan-
dard TD(A), our networks did not learn to beat
WALLY within a reasonable number of games,
compared to the other algorithms. The dedi-
cated algorithms reach 70% wins within 10000
games, and up to 80% within 20000 games. Of
the algorithms we have tested, TD(u) clearly
performs best, followed by TD-leaf()).

We believe that a fair amount of ‘genuine’
Go knowledge was learned. The clearest ev-
idence of this is in reaching about 50% wins
agains GNUGO at its lowest level, just by train-
ing against WALLY. Again, TD(u) yields the
highest playing strength and the best perfor-
mance at the classification of endpositions. This
indicates that TD(u) indeed learns more ‘gen-
uine’ Go knowledge than the other algorithms.

We have tried several network training al-
gorithms. The RPROP algorithm proved to
be much faster than standard backpropaga-
tion. We also tried Baird’s residual algorithm
and found that it performed even better than
RPROP. It remains unclear whether residuals
might yield fast learning on other tasks, too,
or whether the observed performance is related
to the structure of our learning task. Further-
more, combining residuals with TD()), which
we call Residual-)\, improved performance even
more. [t will be interesting to see whether these
results hold also for other learning tasks.

In this paper, we have focused on a compar-
ison of temporal-difference reinforcement learn-
ing algorithms in a scaled-down version of the
game Go. As a consequence the implementa-
tion of the features which are derived from the
game state has not been explicated in great de-
tail. It should be noted that in order to im-
prove computer-based playing of Go both the
design of this feature set and the choice of the



learning algorithm need to be optimised. It is
expected that the use of better features will
improve the overall performance of gameplay,
while maintaining the performance rank order
of TD-learning variants which has been found
in this study.
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