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Abstract
This paper discusses a trainable system to extract
features for image segmentation based on non-linear
mapping of local features.

Supervised training methods are presented, for
artificial neural diabolo networks, which produce a
mapping comparable to Fisher’s linear discriminant
mapping. This mapping can be used to decrease
dimensionality whilst preserving class separability.

It is shown that the non-linear feature extraction
performed in diabolo networks can increase class
separability, compared to linear mapping methods,
thus resulting in improved image segmentation.

1 Introduction
To handle a selective image database search, low-
level properties in images can be calculated in a
local neighbourhood. Algorithms that calculate such
low-level properties are called filters. Many special
purpose applications have been developed which
apply problem specific filters. For well-defined tasks
a small number of these filters often is sufficient to
characterise different image regions. However if the
important features are not previously known, either
because there is no expert on the subject, because
the problem is too complex, or because examples of
the objects are not given in advance, all one can do
is apply more filters and search for a useful
combination.

In general a filter performs a measurement on the
local neighbourhood around each pixel. In pattern
recognition such measurements are called features.
If more filters are applied to an image each pixel has
its own feature-vector, built from all measurements,

which can be used to classify the pixels, finally
resulting in image segmentation. In most cases
however, these initial feature-vectors will not be
efficient. They are not efficient since features can be
redundant, correlated or non-linearly related and the
computational cost of calculations grows with the
number of features. Another problem is the fact that
distances loose meaning in high dimensional space.
To obtain more efficient feature-vectors it is
necessary to reduce the dimensionality of the
feature-space. Methods that do this are feature-
selection and feature-extraction methods. In this
paper we focus at feature-extraction. An interesting
approach to feature selection, which might also be
applied to our neural networks, can be found in [2].

In pattern recognition there is a wide range of
methods for feature extraction such as principal
component analysis, statistical discriminant analysis,
independent component analysis and Kohonen
mapping. This paper describes and analyses a
feature extraction method based on the non-linear
mapping of original features onto a lower-
dimensional subspace with feed-forward neural
networks.

The rest of this paper is organised as follows: first in
section 2 some feature extraction methods that can
be implemented in feed forward neural networks are
described. In section 3 a training algorithm for non-
linear diabolo networks is given. In section 4 some
experiments are shown. Finally, in the last section,
some conclusions are drawn.

2 Mapping methods
A process that has as input a n-dimensional feature-
vector x and as output a m-dimensional feature-
vector y, m<n, is called a feature extraction method
or mapping method. The goal of projecting the
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original n-dimensional feature-vector onto an m-
dimensional subspace is to get a more efficient
combination of the original features.

Mapping methods can either be linear or non-linear
and supervised or unsupervised. The difference
between supervised and unsupervised methods is
whether or not class information is used.

2.1 Unsupervised mapping methods

The most widely used linear mapping is the
Principal Component Analysis (PCA) also known as
the Karhunen-Loève transform. This unsupervised
mapping method is a projection method that assumes
the best mapping to preserve the maximum amount
of variance. It can be shown [1] that the optimal
linear solution for representing the n-dimensional
vectors x in an m-dimensional space, m<n, is to
project x onto the surface spanned by the m largest
eigenvectors of the covariance matrix.

It is easily shown that a 3-layer feed-forward neural
network with n inputs, m neurons in the second layer
and n neurons in the third layer, with all linear
activation functions, is able to perform a PCA
mapping between the first and the second layer.
Such neural networks are often called auto-
associative or diabolo networks. A schematic
overview of a linear diabolo network is shown in
Figure 1.

n-dimensional
output layer

m-dimensional
bottleneck layer

n-dimensional
input layer

Figure 1, linear diabolo network

To learn to approximate a PCA mapping between
the input and bottleneck layer and a reconstruction
between the bottleneck and output layer, the output
of the network is trained to approximate the input.
So the inputs are also the targets. After the network
is trained it is split and the first half, between the
input and bottleneck layer, is used for extracting the
m new features. The main difference with normal
PCA is that, in general, the extracted features will be
non-orthogonal rotated versions of the features
extracted by normal PCA. Furthermore it turns out
that for practical applications the normal PCA,
which is non-iterative, is trained much faster.

An extension of the PCA network is the Non-Linear
Principal Component Analysis (NLPCA) network.
The difference with linear PCA networks is that this
network has extra hidden layers between in- and
output and the bottleneck-layer. The neurons in
these extra hidden layers have non-linear activation
functions, which allow the network to find non-
linear subspaces.

The smallest NLPCA network with non-linear
compression and reconstruction, shown in Figure 2,
uses five layers. The first and the fifth layer are the n
inputs and outputs. The third layer has m neurons,
usually with linear activation functions. The neurons
in the second and fourth layer perform the non-linear
transformation. The number of neurons in these
layers depends on the amount of non-linearity in the
compression and reconstruction of the data. After
the network is trained it is split and the first half,
between the input and bottleneck layer, is used for
extracting the m new features.

n-dimensional
input layer

hidden layer with non-
linear activation functions

m-dimensional
bottleneck layer

hidden layer with non-
linear activation functions

n-dimensional
output layer

Figure 2, Non-linear diabolo network

2.2 Supervised mapping methods

When we have two or more classes, feature
extraction is equivalent to the choice of the mapping,
which is most effective for showing class
separability. In statistical discriminant analysis,
within-class, between-class and mixture scatter
matrices are used to formulate criteria of class
separability. The within-class scatter matrix shows
the scatter of samples xi around their class expected
vector µi, and is expressed by
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a between-class scatter matrix can be defined as
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the mixture scatter matrix is the covariance matrix of
all samples regardless of their class assignments, and
is defined by
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Pi is the a priori probability of class i, k is the
number of classes and µ is the mean of all vectors
regardless of class assignment.

In order to formulate criteria for class separability,
we have to derive a number from these matrices.
There are many ways to do this. In general the
number should be larger when the between-class
scatter is larger or the within-class scatter is smaller.
A criterion commonly used for linear mapping
methods is







=

2

1

S

S
trJ , (4)

in which S1 and S2 are one of  Sb , Sw or Sm. In our
experiments we used Sb for S1 and Sw for S2.

It can be shown [1] that the optimal linear solution
with respect to J for representing the n-dimensional
feature-vectors x in an m-dimensional subspace,
m<n, is to project x onto the surface spanned by the

m largest eigenvectors of 1
1

2 SS − . This projection is

known as Fisher’s linear discriminant mapping
(FLD).

Although FLD mapping has proven to be a useful
tool in pattern recognition, it is limited to linear
projections.

Since diabolo networks can learn linear and non-
linear PCA mapping by unsupervised training of the
output to approximate the input [3], we can ask the
question if a similar training method, with targets
presented at the output of the network, could be
applied to learn FLD mapping.

The first question in training a diabolo network to
approximate FLD mapping is what targets should be
used. For the PCA network we chose the input
vectors as targets. While this approach ensures us
that the global structure is preserved, it does not
necessarily improve class separability. Since we
choose to train our diabolo networks with targets
presented at the output of the network, we cannot
directly optimise class separability in the bottleneck
layer. We can however try to optimise class
separability at the output of the network. If the
reconstructed feature-space is well separable the

same should hold for the extracted features in the
bottleneck layer, although it should be noted that the
job of actually separating the classes in the
bottleneck layer might be harder due to the non-
linear transformations.

To enhance class separability we would like a
contraction of each class. Ideally each class would
be projected in one unique point. Therefor to train a
diabolo network to find a good separable mapping
we use one unique point per class as the target.

A criterion that should be optimised for the targets is
the preservation of the global structure of the
reconstructed feature-space. To do this we can
define a scatter measure, similar to (1), showing the
scatter of samples xi around their target vector ti as
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in which Pi is the a priori probability of class i and k
is the number of classes.

It can easily be shown that the trace of Stw (5), which
is the mean-square distance to targets, is minimised
by choosing the class means as targets. In most
applications these targets perform well. In some
cases however they can create a problem since the
distances between targets of overlapping classes or
classes having strange distributions could become
small, thus reducing separability.

To overcome problems for most class distributions a
second scatter measure can be devised which shows
the scatter of the target vectors ti around the
expected vector, regardless of class assignment, µ as
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in which Pi is the a priori probability of class i and k
is the number of classes.

With these two scatter matrices targets can be
calculated by iterative maximisation of J, using Stb

for S1 and Stw for S2. Our choice for J is motivated by
the fact that this criterion is used for FLD mapping
and therefor might be useful for comparing NLFLD
mapping to FLD mapping. In general however there
is a much wider variety of clustering techniques,
optimising other criteria, that could be applied to
calculate targets, this however is beyond the scope
of this paper.
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One important difference, that should be kept in
mind when comparing normal FLD mapping to
mapping with a diabolo network, is that the diabolo
network is trained to minimise distances to class
assigned targets. This means that for a diabolo
network there will be a trade-off between
minimising within-scatter and restoring the between-
scatter associated with the target positions. For
normal FLD mapping the trade-off is between
minimising within-scatter and maximising between-
scatter.

3 Training the network
Training a non-linear diabolo network generally
takes quite a long time to reach an optimal
performance. To improve training speed we
initialised our networks with an approximation of
the best linear mapping. This is done in five steps:

1. First a linear mapping and reconstruction is
calculated which results in a linear diabolo
network with one hidden bottleneck layer with
m neurons.

2. For obtaining a five-layer diabolo network two
extra layers are added between the hidden layer
and the output layer. Initially these extra layers
use m neurons, with linear activation functions.
The weights and biases of the new layers are set
to perform a unity mapping, thus ensuring that
the output of the network remains the same. The
middle of the three m-dimensional layers
becomes the new bottleneck layer.

3. The m neurons in the layers around the
bottleneck layer are copied a number of times
and the connection weights are divided by the
number of copies so that the inputs to the next
layers remain the same.

4. The linear activation functions, of the neurons
in the layers around the bottleneck layer, are
replaced with non-linear hyperbolic tangent
sigmoid activation functions. The weights and
biases are adjusted so that the data is
approximately in the linear part of the activation
function.

5. Finally to avoid symmetry problems in training,
due to identical neurons in the same layer, noise
is added to all weights and biases.

The now obtained diabolo network is trained further
with standard back-propagation training algorithms.

4 The Experiments
Several experiments were performed to investigate
the power of non-linear mapping methods for image

segmentation. Some results are presented in the
following.

In our experiments a 256x256 image of Lena was
used. The image is shown in Figure 3. From this
image 4 Intensity, 9 DCT, 8 Gabor, 4 Wavelet and
12 Colour features were calculated in a local 9x9
window around each pixel. We manually selected
regions of the classes skin, the hat, the boa, hair and
the background. From these regions 200 samples per
class were selected for learning and another 200
samples per class were selected for testing. These
samples were selected randomly under the constraint
that the local window around pixels selected for
learning did not overlap the window around pixels
selected for testing.

With samples selected for learning, several different
5-layer diabolo networks were trained. These
networks were different in the sense that we tried
different numbers of neurons for all hidden layers.

For training the networks we used gradient descent
with momentum and adaptive learning back-
propagation. From the training examples 90 percent
was used for training and 10 percent was used for
validation. We trained for 10000 epochs until the
performance on the validation set decreased over
100 epochs. If the training had not reached 10000
epochs or performance had not increased, training
was restarted for at most five times with other
training and validation sets randomly chosen from
the 1000 learn vectors.

After comparing the networks we concluded that the
best performance would be obtained using a 4-
dimensional bottleneck. For the linear case this is
obvious since five class-means span a 4-dimensional
subspace, for non-linear mapping this relation is less
obvious since a lower-dimensional subspace could
also curve through all four class-means. However,
using only two neurons in the bottleneck layer and
12 neurons in both non-linear hidden layers seemed
more instructive for comparing the different
mapping methods. Furthermore, it turned out that for
this image the best results did not decrease much by
going from a 4-dimensional subspace to a 2-
dimensional subspace. Another advantage of using a
2-dimensional mapping is that it is well suited for
visual inspection of the feature-space.
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Figure 3, Lena

After selecting a new learn set and test set, following
the same procedure as before, four new mappings
were trained. All networks were trained to map the
data onto a 2-dimensional subspace, using 12
neurons in the hidden layers for compression and
reconstruction. After training each network was split
and the first half was used to extract the two new
features. These features, still all from pixels selected
for learning, were used to train a Mahalanobis
classifier and a nearest mean classifier. These
classifiers were then tested on all features extracted
from the test-set. In Table 1 the percentages of errors
are shown for the different mapping methods. The
classification error of both classifiers applied to the
original 37-dimensional feature-vectors was 34.1 %
for the nearest mean classifier and 10.7 % for the
Mahalanobis classifier with optimal regularisation.

Classifier PCA NLPCA FLD NLFLD

Nearest mean 44.2 % 38.1 % 15.9 % 8.8 %

Mahalanobis 36.7 % 32.2 % 14.7 % 8.5 %

Table 1, Classification errors after mapping

To see how well the diabolo networks had optimised
class-separability, the performance of the different
mapping methods was calculated with criterion J
(4). The results are shown in Table 2. Scatter-plots
of the associated feature-spaces are shown in Figure
4

PCA NLPCA FLD NLFLD

J 1.89 1.93 11.85 12.65

Table 2, Class separability

Figure 4, Extracted 2d-features of 150 test-samples.
Left top PCA, right top FLD, left bottom NLPCA,

right bottom NLFLD.

To illustrate some differences between the mapping
methods, we used the same Mahalanobis classifiers
to segment the whole image. The results are shown
in Figure 5. The reader should keep in mind that the
question of what image looks better is subjective,
that the result is influenced by our choice for equal
probabilities and less than 50% of the images has
actually been used for training the classifier. The
different feature extraction methods should therefor
mainly be judged on their performance on the test
set, and not on the segmented images.

Figure 5, Segmented images of Lena. Left top PCA,
right top FLD, left bottom NLPCA, right bottom

NLFLD.
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5 Conclusion and discussion
In this paper a new supervised method for training
non-linear diabolo networks was presented which
can improve feature extraction compared to linear
PCA and FLD mappings.

We’ve shown that non-linear diabolo networks can
effectively learn to reduce dimensionality and at the
same time increase class separability. In general the
reduction of dimensionality performed by non-linear
mappings can aid in improved speed and
performance for all distance based classifiers.
Combined with feature-selection methods the
diabolo network is a valuable tool for fast selective
search through high dimensional data.

In our experiments we’ve shown that the
performance of image segmentation algorithms, that
apply filter banks, can be improved with non-linear
diabolo networks. Class separability has been
increased for the NLFLD mapping. The NLPCA
mapping also shows a slight increase. The result,
however, is not as much as we might have hoped.
Better results may be obtained by repeating the
experiment several times, with larger learn-regions,
and averaging a leave-one-out estimate obtained
from a smaller test-region.

A remaining problem is the choice for the number of
neurons and hidden layers that should be used. In
general the number of freedoms should be as low as
possible, since each extra neuron increases the
computational complexity and the chance of over
training. However aside from some rough estimates
for the intrinsic dimensionality most parameters still
have to be tuned on a trial and error basis.

In this paper we presented a mapping that performs
both extraction and reconstruction of the original
feature-space, in many applications the
reconstruction of the original feature-space will not
be used and training methods that do not need
calculation of the reconstruction of the feature-space
might be favoured over diabolo networks. An
approach might be to calculate the derivative of J
(4), for data projected to an m-dimensional output-
layer, in our case the bottleneck layer, and use it to
train the network with back-propagation. A problem
however is that the direct minimisation of J is
computationally much more intensive than just
minimising distances, furthermore the criterion itself
is questionable.

In our research we found some discomforting
properties of criterion J (4), which is used for
optimising Fisher’s Linear Discriminant mapping.

For the case of simple class distributions and a small
number of classes this criterion performs well. If the
number of classes gets high, the extracted feature-
space may not be optimal for classification purposes.
Since J is only invariant for translation and rotation
of the feature-space, non-linear transformations may
give results that are partially irrelevant with respect
to how well classes are separable. Its use is therefore
questionable. In our approach we only used it to
calculate targets and possible problems may
therefore be overcome by applying better clustering
techniques. However, non-linear mapping methods
that optimise J directly should be treated with
caution.
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