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Abstract

This paperproposesa new Eye-basedecurrentNetwork Architecture(ERNA)
for image classification. The new architectureis trained by a combinationof Q-
learningandRPROP Theclassificatiorperformances comparedvith othernetwork
architecturesnthetaskof determiningconnectednedsetweerpixelsin smallbinary
images.Theexperimentsshav thatERNA outperformsboththe standardnulti-layer
perceptrometwork andthefully-connectedecurreninetwork on thetaskmentioned
above. This performancédeadsusto the conclusiorthatthe eye facilitateslearningin
thetopologically-structurediomainof imageclassification.

1 Introduction

Determiningconnectednesis a fundamentakaskin the field of image processingand
patternrecognition.In 1969Minsky andPapert[2] shavedthatperceptrongannotiearn
the attribute of connectednesdn the 1988 epilogueof the expandededitionthey argue
thatthe sameholdsfor multi-layerperceptro{MLP) networks. Comparinghis statement
with thewell-known factthat MLPs canapproximateary functionarbitrarily closewhen
givensufiicient hiddenunits,we mayraisethe questionwhetherit is possibleto develop
anetwork architecturghatlearnsto determineconnectedness.

This paperaddressetheissuefor the caseof connectednedsetweerpixels,i.e., we
examineif it is possibleto determinethattwo remotepixels areconnectedy a pathof
neighboringpixels. Thistypeof connectedneds underlyingglobalconnectednesshere
thetaskis to detectunconnecteabjects. RecentlyWang([7] proposeca specialkind of
recurrentneural-netvark architectureoasedon coupledoscillators,ableto determinethe
numberof unconnecteabjectsin animage. Although this resultseemspromising,his
network is prewired ratherthantrainedby examples.

As analternatveweintroducethe Eye-basedRecurreniNetwork Architectureg(ERNA)
thatlearnsto classifyimages.Thenew architecturas inspiredby thehumaneye function
andis appliedto the taskof learningconnectednessts performanceas comparedwith
threeothernetwork architectures.

The remainderof this paperis organizedasfollows. In section2 the new network
architectureis introduced. Section3 explainsthe training procedure. In section4 we
discussthe generatiorof the dataset. Section5 containsexperimentalresults. Finally,
section6 providesconclusionsandfutureresearch.



2 ERNA

The standardeed-forwardmulti-layer perceptrorarchitecturgd MLP) for patternclassifi-
cationusuallyhasonehiddenlayerwith non-lineartransferfunctions,is fully connected
to all inputs,andhasanoutputlayerwith oneneuronassignedo eachclass.Severaltrain-
ing algorithmsexist for this network architecturethatcanfind reasonablyoodsolutions
for agreatvariety of supervised-learnintasks.

The disadwantageof usingthe MLP for imageclassificationis that the architecture
doesnotexploit ary knowledgeaboutthetopologicalorderingof pixels. Althoughpixels
in animagearetopologicallyfixed on a structuredgrid, the corventionalnetwork archi-
tecturedreatevery pixel just asan (arbitrary) elementof the input vector, thusignoring
the spatialorderof the original representationFor humansthis disadwantagebecomes
evidentin the task of recognizingnaturalimagesin which the spatialorder of pixelsis
removed eitherby randompermutationor by concatenatioiinto a lineararray Clearly,
for methodsdealingwith low-level imagepropertiesthe topologicalorderingis useful.
This obsenationinspiredusto employ a specialinput for our new network architecture.

Guidedby the unrivaled performanceof
humanvision andthe factthat humans(and
mary otheranimals)have eyeswe designed
ERNA, anEye-basedRecurreniNetwork Ar-
chitecture.Figure 1 shavs the main compo-
nentsof ERNA. In ourarchitecturetheeyeis
an input structurecovering a local subsetof  inputimage
pixels surroundinga movable point of fixa- ~ ""%°
tion (seeupperleft corner).Thefocusingand
scanningoperationsof the eye imposespa-
tial order onto the input, thus automatically
providing information aboutthe topological
orderingof pixels.

The movementof the eye is controlled
by five actionneurong(left, right, up, down,
stay). Togetherwith two action neuronsfor
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formtheactionlayer(seeupperright corner). .
Focusingthe eye on relevant pixels usu- Figurel: ERNA

ally requiresmultiple actions. Sinceknowledgeaboutpreviously obsened pixels may
be neededa memoryseemsnecessaryA memoryis implementedby addingrecurrent
connectiongo the network architecture The simplestway to do this is linking the output
of the hiddenlayer directly to theinput. However, sinceinformationis partially redun-
dant,anadditionallinearlayer, calledglobalmemoryis appliedto compressnformation
betweerthe outputof thehiddenlayerandtheinputfor the next iteration.
Sincetheglobalmemoryhasnotopologicalordering(with respecto theimagestruc-
ture) andis overwrittenat every iteration, it is not well suitedfor long-termstorageof
informationrelatedto specificlocationsin theimage. Thereforealocal memoryformed
by linearneuronscoupledto the positionsof theinputpixelsis devised. At eachiteration,
thehiddenlayeris connectedo the neuronsof thelocal memoryassociatedvith thearea



visible by the eye. In ERNA the numberof local memoryneuronsfor a pixel aswell
asthe readableandwritable window size are definedbeforehand.The operationof the
network is furtherfacilitatedby threeextrainputneurongepresentinghe co-ordinate ®f
theeye’s point of fixation (X,Y) andthe maximumnumberof iterationsleft (1).

Below we briefly discussthe operationof ERNA. At eachiterationstepthe hidden
layerperformsa non-lineammappingof input signalsfrom the eye, the local memory the
globalmemory the actionlayerandthethreeextrainputsto thelocal memory theglobal
memoryandthe actionlayer. The network thenexecutesthe actionassociateavith the
actionneuronwith thelargestoutputvalue. The network iteratesuntil the selectedaction
performsthe classificationpr a maximumnumberof iterationsis reached.

We notethat,next to thenormalrecurrentonnection®f thememoryin ERNA theac-
tionlayeris alsorecurrentlyconnectedo thehiddenlayer, thusallowing (back)propagation
of informationthroughall theactionneurons.

Sincethe eye automaticallyincorporate&nowledgeaboutthetopologicalorderingof
pixelsinto the network architecturewe expectit to facilitatelearningin topologically-
orientedimage-classificationiasks, i.e., with the samenumberof training examplesa
betterclassificatiorperformanceshouldbe obtained.To evaluatethe addedvalue of the
eye andthat of the recurrentconnectionsERNA is comparedwith threeothernetwork
architectures.

The first network is the MLP, which hasa feed-forward architecturewith one non-
linear hiddenlayer The secondnetwork is a feed-forward network with an eye. This
network is a stripped-davn versionof ERNA. All recurrentconnectionsareremovedby
settingthe numberof neurondor local andglobalmemoryto zero. Previous actionval-
uesarealsonotincludedin the input. The third network is a recurrentnetwork with a
fully-connectednput, a fully-connectedrecurrenthiddenlayer with non-lineartransfer
functions,anda linear outputlayer with threeaction neurong(connectedunconnected,
thinking). Thedifferencewith the MLP is thatthe hiddenlayerhasrecurrentconnections
andthe outputlayer hasa third action-neurorfor performingmoreiterations. This net-
work architecturas very similar to thewell-known ElImannetwork [1] exceptthatsignals
alsopropagateecurrentlybetweenrthe actionlayer andthe hiddenlayer (ashappensn
ERNA).

3 Training procedure

In our experiments ERNA andthe otherthreenetworks weretrainedwith the resilient
propagationalgorithm (RPROP) developedby Riedmiller and Braun[5]. RPROPis a
gradient-basettraining procedurethat overcomeshe disadwantagef gradient-descent
techniquegslownesshlurredadaptvity, choiceof learningparametersgtc.).

The gradientusedby RPROP consistsof partial derivativesof eachnetwork weight
with respectto the (meansquare)error betweenthe actualoutputvaluesandthe target
outputvaluesof the network. For the MLP the target valuesare directly derived from
classinformation(connected unconnected)For ERNA the calculationof targetsis less
trivial andwill bediscussedn subsectiorB.1.

Whenthetargetvaluesareknown, thegradientfor feed-forwardnetworkscanbecal-
culatedby repeatedpplicationof thechainrule, usingstandardackpropagatiorfFor the



recurrentnetworks severaltechniquesanbe appliedfor calculatingthe gradient[3]. In
our experimentghe gradientis calculatedwith backpropagatiothroughtime [9], which
correspondso performingstandardackpropagationn the network unfoldedin time.
The quality of the weightupdatesstronglydependsn the generalizatiorof the cal-
culatedgradient. Thereforeall training wasdonein batch. This meanghatthe gradient
wasaveragedver all trainingexamplesbeforeperformingthe RPROP weightupdate.

3.1 Action values

The calculationof the gradientrequirestargetvalues.SinceERNA hasto controlactions
thatdonotdirectly performclassificationreinforcementearningis used.However, in re-
inforcementearningthereareno pre-definedargets.Insteadjncidentalpositive (reward)
or nggative (punishmentyeinforcemensignalsconstitutethe teachingsignal. The net-
work mustbetrainedto maximizethe sumof thereinforcement$or a completesequence
of actions.An appropriataeinforcement-learningnethodis Q-learning[8].

Q-learningis a methodfor learningstate-actiorvalues. A state-actiorvalue,or Q-
value,is the maximumexpectedsumof reinforcementshatcanbe obtainedrom agiven
statewhenperformingtheassociatedction. For neuralnetworksthis meanghatfor each
possibleaction,the network hasan associate@ctionneuronthatis trainedto predictthe
Q-value.By definitionthe optimal Q-valuesmustsatisfy

Q(st,a:) =1 + 7y gfolcQ(sHl, at41) 1)

wherer; is theimmediatereward after executingactiona; in states; attime ¢, and~y
is adiscountfactorfor long-termconsequencesf actions.Althoughfor finite sequences
~ canbe setexactly to 1, it is customaryto usesomevhatsmallervaluesto favor quick
results.However, if « is chosertoo low, the network tendsto behave probabilistically

Thetargetfunctionfor Q-learningis directly derivedfrom (1) in theform of

T(st,a¢) =10 + Y max Q' (8¢41,a41) 3

for which Q' meanghatthe estimationof the network is usedinsteadof the optimal
Q-value(whichis unknown).

Althoughthetargetscalculatecby formula(2) give reasonableesults corvergenceas
usuallyquite slow. Thereasonis thatlong chainsof actionsdelaylearningfrom distant
reinforcemensignals.To overcomethis problemQ()\)-learning[4, 6, 8] canbeused.The
targetfunctionfor Q(\)-learningcanbedefinedrecursvely as

T(styae) =m¢ +v((1 = N) max Q' (8¢41,a¢41) + /\gliiCT(StJrl, aty1)) ()

in which X is aweightingfactorbetweerD and1 thatdeterminegherelative contribu-
tion of futurereinforcementso the estimatedargetvalue. Since(3) useshetargetvalue
for the optimal action at the next iteration, it canonly be appliedin a chainof optimal
actions. The executionof non-optimalactionsduring training, known asexploration,is
necessaryo ensurghatoptimal Q-valuescanbelearned.Thereforewhenattimet + 1 a



non-optimalkctionis executed2) is usedinsteadof (3). Whena; is afinal action(usually
classificationpnly thedirectreinforcemensignalr; is usedastargetvalue.

4 Thedata set

Two binary-valuedpixelsareconnectedf boththeir valuesequall andtheir distances
1 (in our squareimagesdiagonalconnectionsare not used). Furthermorejf pixel A is
connectedo B andB is connectedo C, A is alsoconnectedo C.

For the experimentssquared x4, 5x5, and6x 6 imageswere created.Imageswith
the upperleft pixel connectedo the lower right pixel werelabelledconnectedall others
werelabelledunconnected.

The binary imageswere not generateccompletelyat random,becauseon suchdata
all networks performalmostoptimally. The reasoris thatin 75% of the caseghe class
unconnectedanbe determinedrom thetwo crucial cornerpixelsalone(bothmustbe 1
for beingconnected)andin addition,mostbrightimagesmoreones)areconnectedand
mostdarkimages(morezeros)areunconnected.

We defineaminimal connected path asapathof onesin which eachpixelis crucialfor
connectednedq# ary pixelis flippedto 0 thetwo cornerpixelsarenolongerconnected).
To build areasonablyifficult dataset,we startedto generatehe setof all minimal con-
nectedpathsbetweerthe two corners.Fromthis seta new setwasgeneratedy making
copiesandrandomlyflipping 15% of the pixels. For all imagesthe two crucial corner
pixelsweresetat 1. Duplicateimagesandimageswith lessonesthanthe minimal path
length(for connectinghetwo cornersywvereremovedfrom the dataset.

After applyingthis procesdor creatingthe4x4, 5x5 and6x 6 imagesthethreedata
setsweresplit into independentraining andtestsets,all containingan equalnumberof
unigue positive and negative examples. The three setscontained300, 1326, and 1826
trainingexamplesand100,440,and608testexamplesyespectiely.

5 Experimental results

The experimentgresentederecomparethe generalizingability of ERNA with thoseof
threeothernetwork architecturesThelearningtaskis to determinebinary connectedness
betweenpixels. It is doneby focusingon the relation betweenthe numberof training
examplesandthe classificatiorperformancen anindependentestset.

To preventover-training, in eachrun a validation setwas selectedrom the training
examplesandwasusedto find the optimal pointfor stoppingthetraining. For the experi-
mentswith the4x 4 imagesl00validationsamplesvereused.For boththe5x5 and6x 6
images200validationsamplesvereused.

Becausf limited computationatesourceandthefactthatreinforcementearningis
muchslowverthansupervisedearning thesizeof thehiddenlayerwastestedexhaustvely
only for the MLP. For ERNA we establishedeasonablsettingsfor the architectureand
training parametershasedon someinitial testson 4x4 images.Althoughthesesettings
werekeptthe samefor all our experimentspthersettingsmight give betterresultsespe-
cially for the largerimages.Thearchitectureso obtainedwasasfollows. For the hidden
layer 25 neuronswith tangentsigmoidtransferfunctions,wereused.Theareaobsenred



by the eye containedthe pixel on the fixation point and the four direct neighbors,i.e.,

the obsenedareawaswithin a Manhattan-distancef onepixel from the centerpoint of

focus. The outputto the local memorywasconnectednly to the centerpoint. For each
pixel threelinear neuronswere assignedo the local memory The global memorycon-

tained15 linear neurons.All memoryandactionneuronswereinitialized at 0. During

training,actionswereselectedandomly5% of thetime. In therestof the casesthe best
actionwasselectedlirectly 75% of the time, and25% of the time actionswereselected
with a probability proportionalto their estimatedQ-value. During validationandtesting
of courseno explorationwasused.The maximumnumberof iterationsperexamplewas
setatthe numberof pixels. Negative reinforcement®f —1 werereturnedfor moving the

eye out of range exceedingthe maximumnumberof iterationsor performingthewrong

classification A positive reinforcemenbdf +1 wasreturnedfor the correctclassification.
The Q-learningparameters\, and~ weresetat 0.3and0.97. All network weightswere
initialized with smallrandomvalues.Trainingwasperformedn batchfor amaximumof

5000epochs.

The MLP wastestedwith hiddenlayersof 3, 6, 12, 25,50 and100neurons.In each
run, the optimal layer sizewasselectedbasedon the performanceon the validationset.
Supervisedrainingwith RPROPwasperformedn batchfor amaximumof 2000epochs.

The stripped-davn versionof ERNA (the feed-forward network with eye) waskept
similarto ERNA asmuchaspossible. Thesizesof the hiddenlayerandthe eye werekept
thesameandtrainingwasdonewith exactly the sameearningparameters.

The fully-connectedrecurrentnetwork (without eye) alsouseda hiddenlayer of 25
neuronsandtrainingwasdonewith exactly thesamdearningparametersxceptthatthis
network wasallowedto train for amaximumof 10,000epochs.

It shouldbe notedthatthe eye wasalwaysinitialized in the upperleft corner Thisis
a reasonablygoodinitialization point that significantlyimprovesperformancdor small
training sets. We did not considerthis to be unfair for comparingthe networks for two
reasonsfirst, evenwhenin our initial experimentshe eye wasinitialized in oneof the
othertwo corners ERNA alwaysoutperformedhe othernetworksfor largertrainingsets.
And secondat leastfor the taskdiscussedn this paper finding a goodstartingposition
canbe doneautomaticallyby trial anderror basedon the performanceon the validation
set(whichis stronglycorrelatedwith the performancenthetestset).

In figures2, 3 and4 the averageperfor
manceis plottedfor the four network archi-
tecturestestedon the 4x4, 5x5 and 6x6
images,respectiely. The horizontal axis
shavsthenumberof trainingexampleswith
logarithmicscaling. Theverticalaxisshovs £ os
the fraction of correctly-classifiedestsam- o
ples (1.0 for perfectclassification,0.5 for s}
pureguessing).

The plots shawv that for all imagesizes .}
both ERNA andthe stripped-dan version ol
of ERNA outperformthetwo networkswith- ..l -
outeye. Moreover, we canseethattherecur
rentconnectionsreonly usefulfor ERNA,

Figure2: Classificatiorof 4x4 images



andthenonly whensufficient trainingexamplesareavailable.

10" 10° 10° 10" 10° 10°
Training examples Training examples

Figure3: Classificatiorof 5x5 images Figure4: Classificatiorof 6x 6 images

6 Conclusionsand futureresearch

Recognizingconnectednessith neuralnetworksis a problemwith a history datingback
to Minsky and Papert[2]. Their resultsled several peopleto believe that MLPs would
not be ableto learnconnectednesdn this paperit is shavn thatthe problemof binary
connectednedsetweertwo pixelscanbelearnedfrom examples.Our experimentshav
that ERNA greatly improves generalizationrcomparedto both the MLP and the fully-
connectedecurrentnetwork. However, sinceour experimentsalso shaved that some
generalizatiorcan even be expectedfrom the MLP, this network still might be a good
choicein thecaseof hugetrainingsets.

The experimentspresentedn this paperseemto confirm our intuitive ideathat an
eye-like input structurecanfacilitatelearningby automaticallyincorporatingknowledge
aboutthe topological ordering of pixels into the network architecture. For eye-based
network architectureswhich control more actionsthan just the classification,the use
of recurrentconnectionds important. Although our experimentsshav that the fully-
connectedecurrennetwork (withouteye) doesnotbenefitfrom its recurrentonnections,
this shouldbe verifiedfor othersizesof the hiddenlayer.

Training recurrentneuralnetworks with simple gradient-descentsually requiresa
long time to corverge to reasonablesolutions. In someinitial experimentswe found
RPROPto behae 2 to 20 timesfasterthanstandardyradient-descentt would therefore
beinterestingo seehow RPROP performson othertasks.

While someinitial experimentshave beendone,ERNA still hasmary parameterso
betuned.For instancethe numberof neuronsassignedo the eye, their distribution over
the field of view, the sizesof the local memory global memoryandthe hiddenlayer,
possibletrade-ofs betweerthesenumbersandtheeffect of recurrentlylinking theaction
neuronsshouldbe studiedmorethoroughly

Althoughin this paperERNA wasonly testedon onespecifictask,the architecture
in principle supportsary kind of image classification. Our future researchwill espe-
cially focuson determiningfeatureshat characterizéocal propertiesandneighborhood



relationsin the gameof Go. However, ERNA shouldalso be testedon taskslike im-
agesggmentation(which is essentiallythe classificationof single pixels)andlarge-scale
imageclassification.

An interestingpoint aboutthe new architecturds the factthat ERNA operatesnde-
pendentlyof the imagesize. Futureresearctshouldgive insightinto the questionhow
well this featurecanbe exploitedwhenscalingup to largerimages.

Anotherline of future researchwe considers to seewhetherit is possibleto extent
Wang's[7] or somecloselyrelatedtype of cellularnetwork sothatit canbetrainedfrom
exampleswhichis essentiafor comparisorio boththe MLP andERNA.
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