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Abstract

This paperproposesa new Eye-basedRecurrentNetwork Architecture(ERNA)
for imageclassification. The new architectureis trainedby a combinationof Q-
learningandRPROP. Theclassificationperformanceis comparedwith othernetwork
architecturesonthetaskof determiningconnectednessbetweenpixelsin smallbinary
images.Theexperimentsshow thatERNA outperformsboththestandardmulti-layer
perceptronnetwork andthefully-connectedrecurrentnetwork on thetaskmentioned
above. Thisperformanceleadsusto theconclusionthattheeye facilitateslearningin
thetopologically-structureddomainof imageclassification.

1 Introduction

Determiningconnectednessis a fundamentaltask in the field of imageprocessingand
patternrecognition.In 1969Minsky andPapert[2] showedthatperceptronscannotlearn
theattribute of connectedness.In the1988epilogueof the expandededition they argue
thatthesameholdsfor multi-layerperceptron(MLP) networks.Comparingthisstatement
with thewell-known factthatMLPscanapproximateany functionarbitrarily closewhen
givensufficient hiddenunits,we mayraisethequestionwhetherit is possibleto develop
anetwork architecturethatlearnsto determineconnectedness.

This paperaddressesthe issuefor thecaseof connectednessbetweenpixels,i.e., we
examineif it is possibleto determinethat two remotepixelsareconnectedby a pathof
neighboringpixels.Thistypeof connectednessisunderlyingglobalconnectedness,where
thetaskis to detectunconnectedobjects.RecentlyWang[7] proposeda specialkind of
recurrentneural-network architecturebasedon coupledoscillators,ableto determinethe
numberof unconnectedobjectsin an image. Although this resultseemspromising,his
network is prewired ratherthantrainedby examples.

AsanalternativeweintroducetheEye-basedRecurrentNetwork Architecture(ERNA)
thatlearnsto classifyimages.Thenew architectureis inspiredby thehumaneyefunction
andis appliedto the taskof learningconnectedness;its performanceis comparedwith
threeothernetwork architectures.

The remainderof this paperis organizedas follows. In section2 the new network
architectureis introduced. Section3 explains the training procedure. In section4 we
discussthe generationof the dataset. Section5 containsexperimentalresults. Finally,
section6 providesconclusionsandfutureresearch.



2 ERNA

Thestandardfeed-forwardmulti-layerperceptronarchitecture(MLP) for patternclassifi-
cationusuallyhasonehiddenlayerwith non-lineartransferfunctions,is fully connected
to all inputs,andhasanoutputlayerwith oneneuronassignedto eachclass.Severaltrain-
ing algorithmsexist for thisnetwork architecture,thatcanfind reasonablygoodsolutions
for a greatvarietyof supervised-learningtasks.

The disadvantageof usingthe MLP for imageclassificationis that the architecture
doesnotexploit any knowledgeaboutthetopologicalorderingof pixels.Althoughpixels
in an imagearetopologicallyfixedon a structuredgrid, theconventionalnetwork archi-
tecturestreatevery pixel just asan(arbitrary)elementof the input vector, thusignoring
the spatialorderof the original representation.For humansthis disadvantagebecomes
evident in the taskof recognizingnaturalimagesin which the spatialorderof pixels is
removedeitherby randompermutationor by concatenationinto a linear array. Clearly,
for methodsdealingwith low-level imageproperties,the topologicalorderingis useful.
Thisobservationinspiredusto employ a specialinput for our new network architecture.
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Figure1: ERNA

Guidedby the unrivaledperformanceof
humanvision andthe fact that humans(and
many otheranimals)have eyeswe designed
ERNA, anEye-basedRecurrentNetwork Ar-
chitecture.Figure1 shows themain compo-
nentsof ERNA. In ourarchitecture,theeyeis
an input structurecovering a local subsetof
pixels surroundinga movablepoint of fixa-
tion (seeupperleft corner).Thefocusingand
scanningoperationsof the eye imposespa-
tial order onto the input, thus automatically
providing information aboutthe topological
orderingof pixels.

The movementof the eye is controlled
by five actionneurons(left, right, up, down,
stay). Togetherwith two actionneuronsfor
classification(connected,unconnected)they
form theactionlayer(seeupperright corner).

Focusingthe eye on relevant pixels usu-
ally requiresmultiple actions. Sinceknowledgeaboutpreviously observed pixels may
be neededa memoryseemsnecessary. A memoryis implementedby addingrecurrent
connectionsto thenetwork architecture.Thesimplestway to do this is linking theoutput
of the hiddenlayerdirectly to the input. However, sinceinformationis partially redun-
dant,anadditionallinearlayer, calledglobalmemory, is appliedto compressinformation
betweentheoutputof thehiddenlayerandtheinput for thenext iteration.

Sincetheglobalmemoryhasnotopologicalordering(with respectto theimagestruc-
ture) and is overwrittenat every iteration, it is not well suitedfor long-termstorageof
informationrelatedto specificlocationsin theimage.Therefore,a local memoryformed
by linearneuronscoupledto thepositionsof theinputpixelsis devised.At eachiteration,
thehiddenlayeris connectedto theneuronsof thelocalmemoryassociatedwith thearea



visible by the eye. In ERNA the numberof local memoryneuronsfor a pixel aswell
asthe readableandwritable window sizearedefinedbeforehand.The operationof the
network is furtherfacilitatedby threeextra inputneuronsrepresentingtheco-ordinatesof
theeye’spoint of fixation (X,Y) andthemaximumnumberof iterationsleft (I).

Below we briefly discussthe operationof ERNA. At eachiterationstepthe hidden
layerperformsa non-linearmappingof input signalsfrom theeye, thelocalmemory, the
globalmemory, theactionlayerandthethreeextra inputsto thelocalmemory, theglobal
memoryandthe actionlayer. The network thenexecutesthe actionassociatedwith the
actionneuronwith thelargestoutputvalue.Thenetwork iteratesuntil theselectedaction
performstheclassification,or a maximumnumberof iterationsis reached.

Wenotethat,next to thenormalrecurrentconnectionsof thememory, in ERNA theac-
tion layeris alsorecurrentlyconnectedto thehiddenlayer, thusallowing(back)propagation
of informationthroughall theactionneurons.

Sincetheeyeautomaticallyincorporatesknowledgeaboutthetopologicalorderingof
pixels into the network architecture,we expectit to facilitate learningin topologically-
orientedimage-classificationtasks,i.e., with the samenumberof training examplesa
betterclassificationperformanceshouldbeobtained.To evaluatetheaddedvalueof the
eye andthat of the recurrentconnections,ERNA is comparedwith threeothernetwork
architectures.

The first network is the MLP, which hasa feed-forward architecturewith onenon-
linear hiddenlayer. The secondnetwork is a feed-forward network with an eye. This
network is a stripped-down versionof ERNA. All recurrentconnectionsareremovedby
settingthenumberof neuronsfor local andglobalmemoryto zero. Previousactionval-
uesarealsonot includedin the input. The third network is a recurrentnetwork with a
fully-connectedinput, a fully-connectedrecurrenthiddenlayer with non-lineartransfer
functions,anda linear outputlayer with threeactionneurons(connected,unconnected,
thinking). Thedifferencewith theMLP is thatthehiddenlayerhasrecurrentconnections
andtheoutputlayerhasa third action-neuronfor performingmoreiterations.This net-
work architectureis verysimilar to thewell-known Elmannetwork [1] exceptthatsignals
alsopropagaterecurrentlybetweenthe actionlayer andthe hiddenlayer (ashappensin
ERNA).

3 Training procedure

In our experiments,ERNA andthe other threenetworks weretrainedwith the resilient
propagationalgorithm(RPROP) developedby Riedmiller andBraun [5]. RPROP is a
gradient-basedtraining procedurethat overcomesthe disadvantagesof gradient-descent
techniques(slowness,blurredadaptivity, choiceof learningparameters,etc.).

The gradientusedby RPROP consistsof partial derivativesof eachnetwork weight
with respectto the (meansquare)error betweenthe actualoutputvaluesandthe target
outputvaluesof the network. For the MLP the target valuesaredirectly derived from
classinformation(connected/ unconnected).For ERNA thecalculationof targetsis less
trivial andwill bediscussedin subsection3.1.

Whenthetargetvaluesareknown, thegradientfor feed-forwardnetworkscanbecal-
culatedby repeatedapplicationof thechainrule,usingstandardbackpropagation.For the



recurrentnetworksseveral techniquescanbeappliedfor calculatingthegradient[3]. In
our experimentsthegradientis calculatedwith backpropagationthroughtime [9], which
correspondsto performingstandardbackpropagationon thenetwork unfoldedin time.

Thequality of theweightupdatesstronglydependson thegeneralizationof thecal-
culatedgradient.Therefore,all trainingwasdonein batch.This meansthat thegradient
wasaveragedoverall trainingexamplesbeforeperformingtheRPROPweightupdate.

3.1 Action values

Thecalculationof thegradientrequirestargetvalues.SinceERNA hasto controlactions
thatdonotdirectlyperformclassification,reinforcementlearningis used.However, in re-
inforcementlearningtherearenopre-definedtargets.Instead,incidentalpositive(reward)
or negative (punishment)reinforcementsignalsconstitutethe teachingsignal. The net-
work mustbetrainedto maximizethesumof thereinforcementsfor acompletesequence
of actions.An appropriatereinforcement-learningmethodis Q-learning[8].

Q-learningis a methodfor learningstate-actionvalues. A state-actionvalue,or Q-
value,is themaximumexpectedsumof reinforcementsthatcanbeobtainedfrom agiven
statewhenperformingtheassociatedaction.For neuralnetworksthismeansthatfor each
possibleaction,thenetwork hasanassociatedactionneuronthat is trainedto predictthe
Q-value.By definitiontheoptimalQ-valuesmustsatisfy

�������
	��
��������������������! #"%$ ���&���('*)+	,�-�('.)�� (1)

where
���

is theimmediaterewardafterexecutingaction
�
�

in state
���

at time / , and
�

is a discountfactorfor long-termconsequencesof actions.Althoughfor finite sequences�
canbesetexactly to 1, it is customaryto usesomewhatsmallervaluesto favor quick

results.However, if
�

is chosentoo low, thenetwork tendsto behaveprobabilistically.
Thetargetfunctionfor Q-learningis directlyderivedfrom (1) in theform of
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meansthat theestimationof thenetwork is usedinsteadof theoptimal
Q-value(which is unknown).

Althoughthetargetscalculatedby formula(2) givereasonableresults,convergenceis
usuallyquiteslow. Thereasonis that long chainsof actionsdelaylearningfrom distant
reinforcementsignals.To overcomethisproblemQ(8 )-learning[4, 6, 8] canbeused.The
targetfunctionfor Q(8 )-learningcanbedefinedrecursively as

0 �����,	��
�����9���:�;�<�=��>@? 8 �%���4��! 5"
$ �A6��&���('*)4	,�
�('*)B��� 8 ������B #"%$ 0 �&���('.)+	��
�('*)��=� (3)

in which 8 is aweightingfactorbetween0 and1 thatdeterminestherelativecontribu-
tion of futurereinforcementsto theestimatedtargetvalue.Since(3) usesthetargetvalue
for the optimal actionat the next iteration, it canonly be appliedin a chainof optimal
actions.The executionof non-optimalactionsduring training,known asexploration,is
necessaryto ensurethatoptimalQ-valuescanbelearned.Therefore,whenat time / �C>

a



non-optimalactionis executed(2) is usedinsteadof (3). When
�
�

is afinal action(usually
classification)only thedirectreinforcementsignal

���
is usedastargetvalue.

4 The data set

Two binary-valuedpixelsareconnectedif both their valuesequal1 andtheir distanceis
1 (in our squareimagesdiagonalconnectionsarenot used). Furthermore,if pixel A is
connectedto B andB is connectedto C, A is alsoconnectedto C.

For the experiments,square4 D 4, 5 D 5, and6 D 6 imageswerecreated.Imageswith
theupperleft pixel connectedto thelower right pixel werelabelledconnected,all others
werelabelledunconnected.

The binary imageswerenot generatedcompletelyat random,becauseon suchdata
all networksperformalmostoptimally. The reasonis that in 75% of the casesthe class
unconnectedcanbedeterminedfrom thetwo crucialcornerpixelsalone(bothmustbe1
for beingconnected),andin addition,mostbright images(moreones)areconnected,and
mostdarkimages(morezeros)areunconnected.

Wedefineaminimal connected path asapathof onesin whicheachpixel is crucialfor
connectedness(if any pixel is flippedto 0 thetwo cornerpixelsareno longerconnected).
To build a reasonablydifficult dataset,we startedto generatethesetof all minimal con-
nectedpathsbetweenthetwo corners.Fromthis seta new setwasgeneratedby making
copiesandrandomlyflipping 15% of the pixels. For all imagesthe two crucial corner
pixelsweresetat 1. Duplicateimagesandimageswith lessonesthantheminimal path
length(for connectingthetwo corners)wereremovedfrom thedataset.

After applyingthis processfor creatingthe4 D 4, 5 D 5 and6 D 6 images,thethreedata
setsweresplit into independenttrainingandtestsets,all containinganequalnumberof
uniquepositive andnegative examples. The threesetscontained300, 1326,and1826
trainingexamplesand100,440,and608testexamples,respectively.

5 Experimental results

Theexperimentspresentedherecomparethegeneralizingability of ERNA with thoseof
threeothernetwork architectures.Thelearningtaskis to determinebinaryconnectedness
betweenpixels. It is doneby focusingon the relationbetweenthe numberof training
examplesandtheclassificationperformanceon anindependenttestset.

To preventover-training, in eachrun a validationsetwasselectedfrom the training
examplesandwasusedto find theoptimalpoint for stoppingthetraining.For theexperi-
mentswith the4 D 4 images100validationsampleswereused.For boththe5 D 5 and6 D 6
images200validationsampleswereused.

Becauseof limited computationalresourcesandthefactthatreinforcementlearningis
muchslowerthansupervisedlearning,thesizeof thehiddenlayerwastestedexhaustively
only for theMLP. For ERNA we establishedreasonablesettings,for thearchitectureand
trainingparameters,basedon someinitial testson 4 D 4 images.Althoughthesesettings
werekept thesamefor all our experiments,othersettingsmight give betterresultsespe-
cially for thelargerimages.Thearchitecturesoobtainedwasasfollows. For thehidden
layer25 neurons,with tangentsigmoidtransferfunctions,wereused.Theareaobserved



by the eye containedthe pixel on the fixation point and the four direct neighbors,i.e.,
theobservedareawaswithin a Manhattan-distanceof onepixel from thecenterpoint of
focus.Theoutputto the local memorywasconnectedonly to thecenterpoint. For each
pixel threelinearneuronswereassignedto the local memory. Theglobalmemorycon-
tained15 linear neurons.All memoryandactionneuronswereinitialized at 0. During
training,actionswereselectedrandomly5% of thetime. In therestof thecases,thebest
actionwasselecteddirectly 75%of thetime, and25%of thetime actionswereselected
with a probabilityproportionalto their estimatedQ-value.During validationandtesting
of courseno explorationwasused.Themaximumnumberof iterationsperexamplewas
setat thenumberof pixels.Negativereinforcementsof

?A>
werereturnedfor moving the

eye out of range,exceedingthemaximumnumberof iterationsor performingthewrong
classification.A positive reinforcementof

�E>
wasreturnedfor thecorrectclassification.

TheQ-learningparameters8 and
�

weresetat 0.3 and0.97. All network weightswere
initializedwith smallrandomvalues.Trainingwasperformedin batchfor amaximumof
5000epochs.

TheMLP wastestedwith hiddenlayersof 3, 6, 12, 25, 50 and100neurons.In each
run, theoptimal layer sizewasselectedbasedon theperformanceon the validationset.
Supervisedtrainingwith RPROPwasperformedin batchfor amaximumof 2000epochs.

The stripped-down versionof ERNA (the feed-forwardnetwork with eye) waskept
similar to ERNA asmuchaspossible.Thesizesof thehiddenlayerandtheeyewerekept
thesameandtrainingwasdonewith exactly thesamelearningparameters.

The fully-connectedrecurrentnetwork (without eye) alsouseda hiddenlayer of 25
neurons,andtrainingwasdonewith exactly thesamelearningparametersexceptthatthis
network wasallowedto train for a maximumof 10,000epochs.

It shouldbenotedthat theeye wasalwaysinitialized in theupperleft corner. This is
a reasonablygoodinitialization point that significantly improvesperformancefor small
training sets. We did not considerthis to be unfair for comparingthe networks for two
reasons:first, evenwhenin our initial experimentsthe eye wasinitialized in oneof the
othertwo corners,ERNA alwaysoutperformedtheothernetworksfor largertrainingsets.
And second,at leastfor thetaskdiscussedin this paper, finding a goodstartingposition
canbedoneautomaticallyby trial anderrorbasedon theperformanceon thevalidation
set(which is stronglycorrelatedwith theperformanceon thetestset).
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Figure2: Classificationof 4 D 4 images

In figures2, 3 and4 theaverageperfor-
manceis plottedfor thefour network archi-
tecturestestedon the 4 D 4, 5 D 5 and 6 D 6
images,respectively. The horizontal axis
showsthenumberof trainingexamples,with
logarithmicscaling.Theverticalaxisshows
the fraction of correctly-classifiedtestsam-
ples (1.0 for perfect classification,0.5 for
pureguessing).

The plots show that for all imagesizes
both ERNA and the stripped-down version
of ERNA outperformthetwo networkswith-
outeye. Moreover, wecanseethattherecur-
rentconnectionsareonly usefulfor ERNA,



andthenonly whensufficient trainingexamplesareavailable.
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Figure3: Classificationof 5 D 5 images Figure4: Classificationof 6 D 6 images

6 Conclusions and future research

Recognizingconnectednesswith neuralnetworksis a problemwith ahistorydatingback
to Minsky andPapert[2]. Their resultsled several peopleto believe that MLPs would
not be ableto learnconnectedness.In this paperit is shown that the problemof binary
connectednessbetweentwo pixelscanbelearnedfrom examples.Our experimentsshow
that ERNA greatly improvesgeneralizationcomparedto both the MLP and the fully-
connectedrecurrentnetwork. However, sinceour experimentsalso showed that some
generalizationcaneven be expectedfrom the MLP, this network still might be a good
choicein thecaseof hugetrainingsets.

The experimentspresentedin this paperseemto confirm our intuitive idea that an
eye-like input structurecanfacilitatelearningby automaticallyincorporatingknowledge
about the topologicalorderingof pixels into the network architecture. For eye-based
network architectures,which control more actionsthan just the classification,the use
of recurrentconnectionsis important. Although our experimentsshow that the fully-
connectedrecurrentnetwork (withouteye)doesnotbenefitfrom its recurrentconnections,
thisshouldbeverifiedfor othersizesof thehiddenlayer.

Training recurrentneuralnetworks with simple gradient-descentusually requiresa
long time to converge to reasonablesolutions. In someinitial experimentswe found
RPROPto behave2 to 20 timesfasterthanstandardgradient-descent.It would therefore
beinterestingto seehow RPROPperformson othertasks.

While someinitial experimentshave beendone,ERNA still hasmany parametersto
betuned.For instance,thenumberof neuronsassignedto theeye, their distributionover
the field of view, the sizesof the local memory, global memoryand the hiddenlayer,
possibletrade-offsbetweenthesenumbers,andtheeffectof recurrentlylinking theaction
neuronsshouldbestudiedmorethoroughly.

Although in this paperERNA wasonly testedon onespecifictask,the architecture
in principle supportsany kind of imageclassification. Our future researchwill espe-
cially focuson determiningfeaturesthatcharacterizelocal propertiesandneighborhood



relationsin the gameof Go. However, ERNA shouldalsobe testedon taskslike im-
agesegmentation(which is essentiallytheclassificationof singlepixels)andlarge-scale
imageclassification.

An interestingpoint aboutthenew architectureis the fact thatERNA operatesinde-
pendentlyof the imagesize. Futureresearchshouldgive insight into the questionhow
well this featurecanbeexploitedwhenscalingup to largerimages.

Anotherline of future researchwe consideris to seewhetherit is possibleto extent
Wang’s [7] or somecloselyrelatedtypeof cellularnetwork sothatit canbetrainedfrom
examples,which is essentialfor comparisonto boththeMLP andERNA.
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