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Abstract

This article investigates the application of machine-learning techniques for the task of scor-
ing final positions in the game of Go. Neural network classifiers are trained to classify
life and death from labelled 9x9 game records. The performance is compared to standard
classifiers from statistical pattern recognition. A recursive framework for classification is
used to improve performance iteratively. Using a maximum of 4 iterations our Cascaded
Scoring Architecture (CSA*) scores 98.9% of the positions correctly. Nearly all incorrectly
scored positions are recognised (they can be corrected by a human operator). By providing
reliable score information CSA* opens the large source of Go knowledge implicitly avail-
able in human game records for automatic extraction. It thus paves the way for a successful
application of machine learning in Go.
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1 Introduction

Evaluating Go ! positions is one of the hardest tasks in Artificial Intelligence (Al)
[2,3]. In the last decades Go has received significant attention from Al research [4,5].
This was stimulated by Ing’s million-dollar prize for the first computer program to
defeat a professional Go player (it has expired unchallenged). Yet, despite all efforts,
the best computer Go programs are still no match even for human amateurs of only
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moderate skill. Partially this is due to the complexity of Go, which makes brute-
force search techniques infeasible on the 19 x 19 board. However, on the 9 x 9
board, which has a complexity between Chess and Othello [4], the current Go
programs perform nearly as bad. The main reason lies in the lack of good positional
evaluation functions. Many (if not all) of the current top programs rely on (huge)
static knowledge bases derived from the programmers’ Go skills and Go knowledge.
As a consequence the top programs are extremely complex and difficult to improve.
In principle a learning system should be able to overcome this problem.

In the past decade several researchers have used machine-learning techniques in
Go. After Tesauro’s [6] success story many researchers, including Dahl [7], En-
zenberger [8] and Schraudolph et al. [9], have applied Temporal Difference (TD)
learning for learning evaluation functions. Although TD-learning is a promising
technique, which was underlined by NEUROGO’s silver medal in 9x9 Go at the 8"
Computer Olympiad in Graz [10], there has not been a major breakthrough, such as
in Backgammon, and we believe that this will remain unlikely to happen in the near
future as long as most learning is done from self-play or against weak opponents.

Over centuries humans have acquired extensive knowledge of Go. Since the knowl-
edge is implicitly available in the games of human experts, it should be possible to
apply machine-learning techniques to extract that knowledge from game records. So
far, game records have only been used successfully for move prediction [7,11,12].
However, we are convinced that much more can be learned from these game records.

One of the best sources of game records on the Internet is the No Name Go Server
game archive [13]. NNGS is a free on-line Go club where people from all over the
world can meet and play Go. All games played on NNGS since 1995 are available
on-line. Although NNGS game records contain a wealth of information, the auto-
mated extraction of knowledge from these games is a non-trivial task at least for the
following three reasons.

Missing Information. Life-and-death status of blocks is not available. In scored
games only a single numeric value representing the difference in points is avail-
able.

Unfinished Games. Not all games are scored. Human games often end by one side
resigning or abandoning the game without finishing it, which often leaves the
status of large parts of the board unclear. 2

Bad Moves. During the game mistakes are made which are hard to detect. Since
mistakes break the chain of optimal moves it can be misleading (and incorrect
from a game-theoretical point of view) to relate positions before the mistake to
the final outcome of the game.

2 In professional games that are not played on-line similar problems can occur when the
final reinforcing moves are omitted because they are considered obvious.



The first step towards making the knowledge in the game records accessible is
to obtain reliable scores at the end of the game. Reliable scores require correct
classifications of life and death. This article focuses on determining life and death
for final positions. By focusing on final positions we avoid the problem of unfinished
games and bad moves during the game, which will have to be dealt with later.

It has been pointed out by Miiller [14] that proving the score of final positions is a
hard task. For a set of typical human final positions, Miiller showed that extending
Benson’s techniques for proving life and death [15] with a more sophisticated static
analysis and search, still leaves around 75% of the board points unproven. His
program EXPLORER classified most blocks correctly, but did so by means of a
heuristic classification. Moreover, it still left some regions unsettled (they should be
played out further). Although this may be appropriate for computer-computer games,
it can be annoying in human-computer games, especially under the Japanese rules
which penalise playing more stones than necessary.

Since proving the score of most final positions is not (yet) an option, we focus
on learning a heuristic classification. In this article our main focus is on learning
the heuristic classification by a multi-layer perceptron (MLP). Consequently, the
heuristic rules that are learned for the classification will be implicitly contained
in the numerical weights of the MLP, which are not easily understood by humans.
However, it may be possible to use our framework to train alternative classifiers, such
as a decision tree classifier, which could facilitate the extraction of heuristic rules
that are more easily understood by humans. The next step is then to formulate the
heuristics as lemmas, i.e., formulae which can be proven by using domain specific
knowledge. As soon as a classification by lemmas is possible, scoring final positions
is performed provably correct. This technique is adopted from the chess endgame
two knights against pawn [16].

We believe that a learning algorithm for scoring final positions is important be-
cause: (1) it provides a more flexible framework than the traditional hand-coded
static knowledge bases, and (2) it is a necessary first step towards learning to eval-
uate non-final positions. In general such an algorithm is good to have because: (1)
large numbers of game records are hard to score manually, (2) publicly available
programs still make too many mistakes scoring final positions, and (3) it can avoid
unnecessarily long human-computer games.

The remainder of this article is organised as follows. Section 2 discusses the scoring
method. Section 3 presents the learning task. Section 4 introduces the representation.
Section 5 provides details about the dataset. Section 6 reports our experiments.
Finally, section 7 presents our conclusion and on-going work.



2 The Scoring Method

The two main scoring methods in Go are territory scoring and area scoring. Territory
scoring, used by the Japanese rules, counts the surrounded territory plus the number
of captured opponent stones. Area scoring, used by the Chinese rules, counts the
surrounded territory plus the alive stones on the board. The result of the two methods
is usually the same up to one point. The result may differ since one player placed
more stones than the other, for three possible reasons; (1) because Black made the
first and the last move, (2) because one side passed more often during the game,
and (3) because of handicap stones. Under Japanese rules the score may also differ
because territory surrounded by alive stones in seki is not counted. In this article, area
scoring is used since it is the simplest scoring method to implement for computers.

Area scoring works as follows. First, the life-and-death status of blocks of connected
stones is determined. Second, dead stones are removed from the board. Third, each
empty point is marked Black, White, or neutral. The non-empty points are already
marked by their colour. The empty points can be marked by flood filling or by
distance. Flood filling recursively marks empty points to their adjacent colour. In
the case that a flood fill for Black overlaps with a flood fill for White the overlapping
region becomes neutral. (As a consequence all non-neutral empty regions must be
completely enclosed by one colour.) Scoring by distance marks each point based
on the distance towards the nearest remaining black or white stone(s). If the point
is closer to a black stone it is marked black, if the point is closer to a white stone
it is marked white, otherwise (if the distance is equal) the point does not affect the
score and is marked neutral. Finally, the difference between black and white points,
together with a possible komi, determines the outcome of the game.

In final positions scoring by flood filling and scoring by distance should give the
same result. If the result is not the same, there are large open regions with unsettled
interior points, which usually means that some stones should have been removed or
some points could still be gained by playing further. Comparing flood filling with
scoring by distance is therefore a useful check to detect whether the game is finished
and scored correctly.

3 The Learning Task

The task of learning to score comes down to learning to determine which blocks of
connected stones are dead and should be removed from the board. This is learned
from a set of labelled final positions, for which the labels contain the colour con-
trolling each point. A straightforward implementation would be to learn classifying
all blocks based on the labelled points. However, for some blocks this is not a good
idea because their status can be irrelevant and forcing them to be classified just
complicates the learning task.



3.1  Which Blocks to Classify?

For arriving at a correct score we require correct classifications for only two types
of blocks. The first type is dead in the opponent’s area. The second type is alive
and at the border of friendly area. (Notice that, for training, the knowledge where
the border is will be obtained from labelled game records.) The distinction between
block types is illustrated in Figure 1. Here all marked stones must be classified. The
stones marked by triangles must be classified alive. The stones marked by squares
must be classified dead. The unmarked stones are irrelevant for scoring because they
are not at the border of their area and their capturability does not affect the score.
For example, the two black stones in the top-left corner kill the white block and are
in Black’s area. However, they can always be captured by White, so forcing them to
be classified as alive or dead is misleading and even unnecessary. (The stones in the
bottom left corner are alive in seki because neither side can capture. The two white
stones in the upper right corner are adjacent to two neutral points and therefore also
at the border of White’s region.)
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Fig. 1. Blocks to classify.

3.2 Recursion

Usually blocks of stones are not alive on their own. Instead they form chains or
groups which are only alive in combination with other blocks. Their status also may
depend on the status of neighbouring blocks of the opponent, i.e., blocks can live by
capturing the opponent. (Although one might be tempted to conclude that life and
death should be dealt with at the level of groups this does not really help because
the human notion of a group is not well defined, difficult to program, and may even
require an underlying notion of life and death.)

Because life and death of blocks is strongly related to the life and death of other
blocks the status of other (usually nearby) blocks has to be taken into account. Par-
tially this can be done by including features for nearby blocks in the representation.
In addition, it seems natural to consider a recursive framework for classification
which employs the predictions for other blocks to improve performance iteratively.
In our implementation this is done by training a cascade of classifiers which use
previous predictions for other blocks as additional input features.



4 Representation

In this section we will present the representation of blocks for classification. Several
representations are possible and used in the field. The most primitive representations
typically employ the raw board directly. A straightforward implementation is to
concatenate three bitboards into a feature vector, for which the first bitboard contains
the block to be classified, the second bitboard contains other friendly blocks, and the
third bitboard contains the enemy blocks. Although this representation is complete,
in the sense that all relevant information is preserved it is unlikely to be efficient
because of the high dimensionality and lack of topological structure.

4.1 Features for Block Classification

A more efficient representation employs a set of features based on simple measur-
able geometric properties, some elementary Go knowledge and some hand-crafted
specialised features. Several of these features are typically used in Go programs to
evaluate positions [17,18]. The features are calculated for: (1) single friendly blocks,
(2) single opponent blocks, (3) multiple blocks in chains, and (4) colour-enclosed
regions (CERs).

For each block our representation consists of the following features (all features are
single scalar values unless stated otherwise):

— Size measured in occupied points.

— Perimeter measured in number of adjacent points.

— Opponents are the occupied adjacent points.

— (First-order) liberties are the free (empty) adjacent points.

— Protected liberties are the liberties which normally should not be played by the
opponent, because of suicide or being directly capturable (i.e., if the opponent
plays there he has at most one liberty).

— Auto-atari liberties are liberties which by playing them reduce the liberties of the
block from 2 to 1, which means that the block would become directly capturable
(such liberties are protected for an adjacent opponent block).

— Second-order liberties are the empty points adjacent to but not part of the liberties.

— Third-order liberties are the empty points adjacent to but not part of the first-order
and second-order liberties.

— Number of adjacent opponent blocks

— Local majority is the number of friendly stones minus the number of opponent
stones within a Manhattan distance of 2 from the block.

— Centre of mass represented by the average distance of stones in the block to the
closest and second-closest edge (using floating point scalars).

— Bounding box size is the number of points in the smallest rectangular box that
can contain the block.



Adjacent to each block are colour-enclosed regions. CERs consist of connected
empty and occupied points, surrounded by stones of one colour. (Notice that regions
along the edge, such as an eye in the corner, are also enclosed). It is important to
know whether an adjacent CER is fully accessible, because a fully accessible CER
surrounded by safe blocks provides at least one sure liberty (the surrounding blocks
are safe when they all have at least two sure liberties). To detect fully accessible
regions we use so-called miai strategies as applied by Miiller [14]. In addition to
Miiller’s original implementation we (1) add miai-accessible interior empty points
to the set of accessible liberties, and (2) use protected liberties for the chaining.
An example of a fully accessible CER is shown in Figure 2. Here the idea is that
if White plays on a marked empty point, Black replies on the other empty point
marked by the same letter. By following this miai strategy Black is guaranteed to be
able to occupy or become adjacent to all points in the region, i.e., all empty points
in Figure 2 that are not directly adjacent to black stones are miai-accessible interior
empty points; the points on the edge marked ‘b’ and ‘e’ were not used in Miiller’s
original implementation [19]. Often it is not possible to find a miai strategy for
the full region, in which case we call the CER partially accessible. In Figure 3 an
example of a partially accessible CER is shown. In this case the 3 points marked ‘x’
form the inaccessible interior for the given miai strategy.
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Fig. 2. Fully accessible CER. Fig. 3. Partially accessible CER.

Analysis of the CERs can provide us with several interesting features. However,
the number of regions is not fixed, and our representation requires a fixed number
of features. Therefore we decided to sum the features over all regions. For fully
accessible CERs we include:

— Number of regions

— Size 3

— Perimeter

— Number of split points in the CER. Split points are crucial points for preserving
connectedness in the local 3 x 3 window around the point. (The region could still
be connected by a big loop outside the local 3 x 3 window.) Examples are shown
in Figure 4.

For partially accessible CERs we include:
— Number of partially accessible regions
3 Since the regions may contain stones we deal with them as blocks of connected intersec-
tions regardless of the colour. Calculations of the various features, such as size, perimeter,

and split points, are performed analogously to the calculations for normal blocks of stones
of only one colour.
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Fig. 4. Split points marked with x.

— Accessible size

— Accessible perimeter

— Size of the inaccessible interior.

— Perimeter of the inaccessible interior.
— Split points of the inaccessible interior.

Another way to analyse CERs is to look for possible eyespace. Points forming the
eyespace should be empty or contain capturable opponent stones. Empty points
directly adjacent to opponent stones are not part of the eyespace. Points on the edge
with one or more diagonally adjacent alive opponent stones and points with two
or more diagonally adjacent alive opponent stones are false eyes. False eyes are
not part of the eyespace (we ignore the unlikely case where a big loop upgrades
false eyes to true eyes). For example, in Figure 5 the points marked ‘e’ belong to
Black’s eyespace and the points marked ‘f” are false eyes for White. Initially we
assume all diagonally adjacent opponent stones to be alive. However, in the recursive
framework (see below) the eyespace is updated based on the status of the diagonally
adjacent opponent stones after each iteration.

Fig. 5. True and false eyespace.

For directly adjacent eyespace of the block we include:

— Size
— Perimeter

Since we are dealing with final positions it is often possible to use the optimistic
assumption that all blocks with shared liberties can form a chain (during the game
this assumption is dangerous because the chain may be split). Examples of a black
and a white optimistic chain are shown in Figure 6. For this, so-called, optimistic
chain we include:

— Number of blocks
— Size

— Perimeter

— Split points



— Number of adjacent CERs

— Number of adjacent CERs with eyespace

— Number of adjacent CERs, fully accessible from at least one block.

— Size of adjacent eyespace

— Perimeter of adjacent eyespace. (Again, in the case of multiple connected regions
for the eyespace, size and perimeter are summed over all regions.)

External opponent liberties are liberties of adjacent opponent blocks which are
not accessible from the optimistic chain.

&

Fig. 6. Marked optimistic chains.

Adjacent to the block in question there may be opponent blocks. For the weakest
(measured by the number of liberties) directly adjacent opponent block we include:

— Perimeter

— Liberties

— Shared liberties

— Split points

— Perimeter of adjacent eyespace

The same features are also included for the second-weakest directly adjacent oppo-
nent block and the weakest opponent block directly adjacent to or sharing liberties
with the optimistic chain of the block in question (so the weakest directly adjacent
opponent block may be included twice).

By comparing a flood fill starting from Black with a flood fill starting from White
we find unsettled empty regions which are disputed territory (assuming all blocks
are alive). If the block is adjacent to disputed territory we include:

— Direct liberties in disputed territory.
— Liberties of all friendly blocks in disputed territory.
— Liberties of all enemy blocks in disputed territory.

4.2 Additional Features for Recursive Classification

For the recursive classification we use the predicted values of previous classifica-
tions, which are floating point scalars in the range between 0 (dead) and 1 (alive),
to construct the following six additional features:

— Predicted value of the strongest friendly block with a shared liberty.
— Predicted value of the weakest adjacent opponent block.
— Predicted value of the second-weakest adjacent opponent block.



— Average predicted value of the weakest opponent block’s optimistic chain.
— Adjacent eyespace size of the weakest opponent block’s optimistic chain.
— Adjacent eyespace perimeter of the weakest opponent block’s optimistic chain.

Next to these additional features the predictions are also used to update the eyespace,
i.e., dead blocks can become eyespace for the side that captures, alive blocks cannot
provide eyespace, and diagonally adjacent dead opponent stones are not counted for
detecting false eyes.

5 The Data Set

In the experiments we used game records obtained from the NNGS archive [13]. All
games were played on the 9x9 board between 1995 and 2002. We only considered
games which are played to the end and scored, thus ignoring unfinished or resigned
games. Since the game records only contain a single numeric value for the score,
we had to find a way to label all blocks.

5.1 Scoring the Data Set

For scoring the dataset we initially used a combination of GNUGO (version 3.2)
[20] and manual labelling. Although GNUGO has the option to finish games and
label blocks the program could not be used without human supervision. The reasons
for this are threefold: (1) bugs, (2) the inherent complexity of the task, and (3) the
mistakes made by weak human players who ended the game in positions that were
not final, or scored them incorrectly. Fortunately, nearly all mistakes were easily
detected by comparing GNUGO’s scores and labelled boards with the numeric scores
stored in the game records. As an extra check all boards containing open regions
with unsettled interior points (where flood filling does not give the same result as
distance-based scoring) were also inspected manually.

Since the scores did not match in many positions the labelling proved to be very
time consuming. We therefore only used GNUGO to label the games played in
2002 and 1995. With the 2002 games a classifier was trained. When we tested the
performance on the 1995 games it outperformed GNUGO’s labelling. Therefore our
classifier replaced GNUGO for labelling the other games (1996-2001), retraining it
each time a new year was labelled. Although this sped up the process it still required a
fair amount of human intervention mainly because of games that contained incorrect
scores in their game record. A few hundred games had to be thrown out completely
because they were not finished, contained illegal moves, contained no moves at all
(for at least one side), or both sides were played by the same player. In a small
number of cases, where the last moves would have been trivial but not actually
played, we made the last few moves manually.

10



Eventually we ended up with a dataset containing 18,222 final positions. Around
10% of these games were scored incorrectly (by the players) and were inspected
manually. (Actually the number of games we inspected is significantly higher be-
cause of the games that were thrown out and because both our initial classifiers and
GNUGO made mistakes.) On average the final positions contained 5.8 alive blocks,
1.9 dead blocks, and 2.7 irrelevant blocks. (In the case that one player gets the full
board we count all blocks of this player as irrelevant, because there is no border. Of
course, in practice at least one block should be classified as alive, which appears to
be learned automatically without any special attention.)

Since the Go scores on the 9x9 board range from —81 to 481 the chances of an
incorrect labelling leading to a correct score are low, nevertheless it could not be
ruled out completely. On inspecting an additional 1% of the positions randomly we
found none that were labelled incorrectly. Finally, when all games were labelled, we
re-inspected all positions for which our best classifier seemed to predict an incorrect
score. This final pass detected 42 positions (0.2%) which were labelled incorrectly,
mostly because our initial classifiers had made the same mistakes as the players who
scored the games.

5.2 Statistics

Since many game records contained incorrect scores we looked for reasons and
gathered statistics. The first thing that came to mind is that weak players might not
know how to score. Therefore in Figure 7 the percentage of incorrectly scored games
related to the strength of the players is shown. (Although in each game only one
side may have been responsible for the incorrect score, we always assigned blame
to both sides.) The two marker types distinguish between rated and unrated players.
Although unrated players have a value for their rating, it is an indication given by
the player and not by the server. Only after playing sufficiently many games the
server assigns players a rating.

Although a significant number of games are scored incorrectly this is usually not
considered a problem when the winner is correct. (Players typically forget to remove
some stones when they are far ahead.) Figure 8 shows how often incorrect scoring
by rated players converts a loss into a win (cheater) or a win into a loss (victim).

It should be noted that the percentages in Figures 7 and 8 were weighted over
all games, regardless of who was the player. Therefore, they do not necessarily
reflect the probabilities for individual players, i.e., the statistics can be dominated
by a small group of players that played many games. This group at least contains
some computer players which have a tendency to get robbed of their points in
the scoring phase. Hence, we calculated some statistics that were normalised over
individual players, e.g., statistics of players who played hundreds of games were

11
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weighted equal to the statistics of players who played only a small number of games.
Thereupon we found that for rated players the average probability of scoring a
game incorrectly is 4.2%, the probability of cheating (the incorrect score converts
a loss into a win) is 0.66%, and the probability of getting cheated is 0.55%. For
unrated players the average probability of scoring a game incorrectly is 11.2%, the
probability of cheating is 2.1%, and the probability of getting cheated is 1.1%. The
fact that, when we normalise over players, the probability of getting cheated is lower
than the probability of cheating is the result of a small group of players (several of
them are computer programs) who systematically lose points in the scoring phase,
and a larger group of players who take advantage of that fact.

6 Experiments

In this section experimental results are presented for: (1) selecting a classifier, (2)
performance of the representation, (3) recursive performance, (4) full-board per-
formance, and (5) performance on the 19 x 19 board. Unless stated otherwise the
various training and validation sets, used in the experiments, were extracted from
games played between 1996 and 2002. The test set was always the same, containing
7149 labelled blocks extracted from 919 games played in 1995.

6.1 Selecting a Classifier

An important choice is selecting a good classifier. In pattern recognition there is a
wide range of classifiers to choose from [21]. We tested a number of well-known clas-
sifiers for their performance (without recursion) on datasets of 100, 1000, and 10,000
examples. The classifiers are: Nearest Mean Classifier (NMC), Linear Discrimi-
nant Classifier (LDC), Logistic Linear Classifier (LOGLC), Quadratic Discriminant
Classifier (QDC), Nearest Neighbour Classifier (NNC), K-Nearest Neighbours Clas-
sifier (KNNC), BackPropagation Neural net Classifier with momentum and adaptive

12



Table 1
Performance of classifiers without recursion.

Classifier | Training size | Training error | Test error | Training time | Classi. speed
(%) (%) (s) (s7h

NMC 100 2.8 3.9 0.0 4.9 x 104
1000 4.0 3.8 0.1 5.2 x 10*
10,000 3.8 3.6 0.5 5.3 x 10*
LDC 100 0.7 3.0 0.0 5.1 x 10*
1000 2.1 2.0 0.1 5.2 x 10*
10,000 2.2 1.9 0.9 5.3 x 10*
LOGLC 100 0.0 9.3 0.2 5.2 x 10*
1000 0.0 2.6 1.1 5.2 x 10*
10,000 1.0 1.2 5.6 5.1 x 10*
QDC 100 0.0 13.7 0.1 3.1 x 10*
1000 1.0 2.1 0.1 3.2 x 104
10,000 1.9 2.1 1.1 3.2 x 104
NNC 100 0.0 18.8 0.0 4.7 x 108
1000 0.0 13.5 4.1 2.4 x 10?
10,000 0.0 10.2 4.1 x 10° 2.4 x 10°
KNNC 100 7.2 13.1 0.0 4.8 x 10°
1000 4.2 4.4 1.0 x 10! 2.4 x 102
10,000 2.8 2.8 9.4 x 10° 2.6 x 10°
BPNC 100 0.5 3.6 2.9 1.8 x 10*
1000 0.2 1.5 1.9 x 10 1.8 x 10*
10,000 0.5 1.0 1.9 x 102 1.9 x 10*
LMNC 100 2.2 7.6 2.6 x 10 1.8 x 10*
1000 0.7 2.8 3.2 x 102 1.8 x 10*
10,000 0.5 1.2 2.4 x 103 1.9 x 10*
RPNC 100 1.5 4.1 1.4 1.8 x 104
1000 0.2 1.7 7.1 1.8 x 10*
10,000 0.4 1.1 7.1 x 10! 1.9 x 104

learning (BPNC), Levenberg-Marquardt Neural net Classifier (LMNC), and RProp
Neural net Classifier (RPNC). Some preliminary experiments with a Support Vector
Classifier, Decision Tree Classifiers, a Parzen classifier, and a Radial Basis Neural net
Classifier were not pursued further because of excessive training times and/or poor

13



164 A - Training error (5000 examples) ||
' —&— Test error
- - Training error (15000 examples)
1.4 —x— Test error I
Zw
— 5% -
: : \\\W/*
=
o
£ 1t |
[0
g *<
T[O8 T B
L A ~._
= —- e
So6f A g
O \\\\
N
0.4} A\ >4 4
\ ~ *
N
0.2f TNy e |
\K—\ﬁ- —A— =4
. .
10° 10' 10°

Number of neurons in hidden layer
Fig. 9. Sizing the neural network for the RPNC.

performance. All classifiers except the neural net classifiers, for which we directly
used the standard Matlab toolbox, were used as implemented in PRTools3 [22].

The results, shown in Table 1, indicate that performance first of all depends on
the size of the training set. The linear classifiers perform better than the quadratic
classifier and nearest neighbour classifiers. For large datasets training KNNC is
very slow because it takes a long time to find an optimal value of the parameter
k. The number of classifications per second of (K)NNC is also low because of the
large number of distances that must be computed (all training examples are stored).
Although the performance of the nearest neighbour classifiers might be improved
by editing and condensing the dataset, we did not investigate them further.

The best classifiers are the neural network classifiers. It should however be noted
that their performance may be slightly overestimated with respect to the size of the
training set, because we used an additional validation set to stop training (this was
not possible for the other classifiers because they are not trained incrementally). The
Logistic Linear Classifier performs nearly as well as the neural network classifiers,
which is quite an achievement considering that it is just a linear classifier.

The results of Table 1 were obtained with networks that employed one hidden layer
containing 15 neurons with hyperbolic tangent sigmoid transfer functions. Since
our choice for 15 neurons was quite arbitrary a second experiment was performed
in which we varied the number of neurons in the hidden layer. In Figure 9 results
are shown for the RPNC. The classification errors marked with triangles represent
results for training on 5000 examples, the stars indicate results for training on 15,000
examples. The solid lines are measured on the independent test set, whereas the dash-
dotted lines are obtained on the training set. The results show that even moderately
sized networks easily overfit the data. Although the performance initially improves
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with the size of the network, it seems to level off for networks with over 50 hidden
neurons (the standard deviation is around 0.1%). Again, the key factor in improving
performance clearly is in increasing the size of the training set.

6.2 Performance of the Representation

In section 4 we claimed that a raw board representation is inefficient for predict-
ing life and death. To validate this claim we measured the performance of such a
representation and compared it to our specialised representation.

The raw representation consists of three concatenated bitboards, for which the first
bitboard contains the block to be classified, the second bitboard contains other
friendly blocks, and the third bitboard contains the enemy blocks. To remove sym-
metry the bitboards are rotated such that the centre of mass of the block to be
classified is always in a single canonical region.

Since high-dimensional feature spaces tend to raise several problems which are
not directly caused by the quality of the individual features we also tested two
compressed representations. These compressed representations were generated by
performing Principal Component Analysis (PCA) on the raw representation. For the
first PCA mapping the number of features was chosen identical to our specialised
representation. For the second PCA mapping the number of features was set to
preserve 90% of the total variance.

The results, shown in Table 2, are obtained for the RPNC with 15, 35, and 75 neurons

Table 2
Performance of the raw representation.

Training Size | Extractor | Testerror | Testerror | Testerror
15 neurons | 35 neurons | 75 neurons
(%) (%) (%)
100 - 29.1 26.0 27.3
100 pcal 22.9 22.9 22.3
100 pca2 23.3 24.3 21.9
1000 - 13.7 13.5 13.4
1000 pcal 16.7 16.2 15.6
1000 pca2 14.2 14.5 14.4
10,000 - 7.5 6.8 6.5
10,000 pcal 9.9 9.3 9.1
10,000 pca2 8.9 8.2 7.7
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in the hidden layer, for training sets with 100, 1000, and 10,000 examples. All values
are averages over 11 runs with different training sets, validation sets (same size as
the training set), and random initialisations. The errors, measured on the test set,
indicate that a raw representation alone requires too many training examples to
be useful in practice. Even with 10,000 training examples the raw representation
performs much more weakly than our specialised representation with only 100
training examples. Simple feature-extraction methods such as Principal Component
Analysis do not seem to improve performance, indicating that preserved variance
of the raw representation is relatively insignificant for determining life and death.

6.3 Recursive Performance

Our recursive framework for classification is implemented as a cascade of classifiers
which use extra features, based on previous predictions as discussed in subsection
4.2, as additional input. The performance measured on an independent test set for
the first 4 steps is shown for various sizes of the training set in Table 3. The results
are averages of 5 runs with randomly initialised networks containing 50 neurons in
the hidden layer (the standard deviation is around 0.1%).

Table 3
Recursive performance.

Training Size | Direct error | 2-step error | 3-step error | 4-step error
(%) (%) (%) (%)
1000 1.93 1.60 1.52 1.48
10,000 1.09 0.76 0.74 0.72
100,000 0.68 0.43 0.38 0.37

The results show that recursive predictions improve the performance. However, the
only significant improvement comes from the first iteration. The improvements are
far from significance for the average 3- and 4-step errors. The reason for this is
that sometimes the performance got stuck or even worsened after the first iteration.
Preliminary experiments suggest that large networks were more likely to get stuck
after the first iteration than small networks, which might indicate some kind of
overfitting. A possible solution to overcome this problem is to retrain the networks
a number of times, and pick the best based on the performance on the validation
set. If we do this our best networks, trained on 100,000 training examples, achieve
a 4-step error of 0.25%. We refer to the combination of the four cascaded classifier
networks and the marking of empty intersections based on the distance to the nearest
living block (which may be verified by comparing to flood filling, see section 2) by
CSA* (Cascaded Scoring Architecture).

In Figure 10 we show twelve examples of mistakes that are made by direct classi-
fication without recursion, which can be corrected by using the 4-step recursion of
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CSA*. All marked blocks were initially classified incorrectly. Initially, the blocks
marked with squares were classified as alive, and the blocks marked with trian-
gles were classified as dead. After recursion this was corrected so that the blocks
marked with squares are classified as dead, and the blocks marked with triangles
are classified as alive.
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Fig. 10. Examples of mistakes that are corrected by recursion.

6.4 Full-Board Performance

So far we have concentrated on the percentage of blocks that are classified correctly.
Although this is an important measure it does not directly indicate how often boards
will be scored correctly (a board may contain multiple incorrectly classified blocks).
Further, we do not yet know what the effect is on the score in number of board points.
Therefore we tested our classifiers on the full-board test positions, which were not
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Fig. 11. Examples of incorrectly scored positions.

used for training or validation.

For CSA* we found that 1.1% of the boards were scored incorrectly. For 0.5% of the
boards the winner was not identified correctly. The average number of incorrectly
scored board points (using distance-based scoring) was 0.15. However, in case a
board is scored incorrectly it usually affects around 14 board points (which counts

double in the numeric score).
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In Figure 11 we show examples of the (rare) mistakes that are still made by the 4-step
classification of CSA*. All marked blocks were classified incorrectly. The blocks
marked with squares were incorrectly classified as alive. The blocks marked with
triangles were incorrectly classified as dead. The difficult positions typically include
seki, long chains connected by false eyes, bent four and similar looking shapes, and
rare shapes such as ten-thousand year ko. In general we believe that many of these
mistakes can be corrected by adding more training examples. However, for some
positions it might be best to add new features or use a local search.

6.5 Performance on the 19x19 Board

The experiments presented above were all performed on the 9 x 9 board which,
as was pointed out before, is a most challenging environment. Nevertheless, it is
interesting to test whether (and if so to what extent) the techniques scale up to the
19 x 19 board. So far we did not focus on labelling large quantities of 19 x 19 games.
Therefore, training directly on the 19 x 19 board was not an option. Despite of this
we tested CSA*, which was trained using blocks observed on the 9 x 9 board, on
the problem set /GS_31_counted from the Computer Go Test Collection. This set
contains 31 labelled 19 x 19 games played by amateur dan players, and was used
by Miiller [14]. On the 31 final positions our 4-step classifier classified 5 blocks
incorrectly (0.5% of all relevant blocks), and as a consequence 2 final positions
were scored incorrectly. The average number of incorrectly scored board points was
2.1 (0.6%).

In his article Miiller [14] stated that the heuristic classification by his program
EXPLORER classified most blocks correctly. Although we do not know the exact
performance of EXPLORER we believe it is safe to say that CSA*, which classified
99.5% of all blocks correctly, is performing at least at a comparable level. Further-
more, since our system was not trained explicitly for 19 x 19 games there may still
be significant room for improvement.

7 Conclusion

We have developed a Cascaded Scoring Architecture (CSA*) that learns to score
final positions from labelled examples. On unseen game records our system scored
around 98.9% of the positions correctly without any human intervention. Compared
to the average rated player on NNGS, who has a rating of 7 kyu for scored 9 x 9
games, we may conclude that CSA* is more accurate at removing all dead blocks,
and performs comparably on determining the correct winner.

By comparing numeric scores and counting unsettled interior points nearly all incor-
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rectly scored final positions can be detected (for verification by a human operator).
Although some final positions are assessed incorrectly by our classifier, most are in
fact scored incorrectly by the players. Detecting games that were incorrectly scored
by the players is important because most machine-learning methods require reliable
training data for a good performance.

7.1 On-going Work

By providing reliable score information CSA* opens the large source of Go knowl-
edge which is implicitly available in human game records. The next step is to apply
machine learning in non-final positions. The representation, techniques, and the data
set presented in this article provide a solid basis for static predictions in non-final
positions. Recent work shows promising results for predicting life and death [23]
as well as predicting territory [24] during the game.

So far, the good performance of CSA* was obtained without any search, indicating
that static evaluation is sufficient for most human final positions. Nevertheless,
we believe that some (selective) search can still improve the performance. Adding
selective features that involve search and integrating our system into MAGOG, our
9% 9 Go program, will be an important next step.

Although the performance of CSA* is already quite good for labelling game records,
there are, at least in theory, still positions which may be scored incorrectly when
the classifiers make the same mistakes as the human players. Future work should
determine how often this happens in practice.

We are considering to use our learning framework to extract human readable heuristic
rules about life and death. By formulating the heuristics as lemmas and proving them
by using domain specific knowledge, we may be able to increase the scope of the
provably correct scoring method for solving Go positions presented in [25].
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