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Abstract

Learningto play Gofrom therulesaloneis extremelyhardfor computers.
Onthe humanscale learningcomputerperformextremelyweak. Even
with alargeamountof hand-codednowledgecomputersarebarelyable
to competeat a weak amaturelevel. The reasonfor this lies (at least
partially) in the visual natureof the game. Over millions of yearsthe
humanvisual systemhasevolvedinto an efficient learningsystemthat
performsextremelywell onalarge numberof pattern-recognitiomasks.

This paperproposesa new Eye-basedrecurrentNetwork Architecture
(ERNA) for raw boardclassification.The new architecturds inspiredby
the humaneye function and can be appliedto a broadrangeof visual-
classificatiortasks.ERNA is trainedby a combinatiorof Q-learningand
RPROP The classificatiorperformancéds comparedvith othernetwork
architecture®n the task of determiningconnectednedsetweenstones.
We alsopresensomepreliminaryresultson thetaskof learningto count
liberties. The experimentsshav that ERNA outperformsboth the stan-
dard multi-layer perceptronnetwork and the fully-connectedrecurrent
network onthetasksmentionedabove. This performancdeadsusto the
conclusiorthattheeye facilitateslearningin thetopologically-structured
domainof Go.

1 Introduction

Sincethe founding yearsof Atrtificial Intelligence(Al) computergameshave beenused
asatestbedfor Al algorithms.Many game-playingystemshave reachecan expertlevel
usinga search-basedpproach.In chesghis approachachieved world-classstrength.Go
is anotableexception.

Thegameof Gois playedby two players blackandwhite, who consecutiely placestones
of their color on the intersectionof a squaregrid. Usually the grid contains19x19 in-
tersections.However the rulesareflexible enoughto accommodatany otherboardsize.
During the gamestonesremainfixed or areremoved (captured)whenthey areno longer
connectedo neighboringemptyintersectionsinitially theboardis empty, but asthegame
developssomestableregionsarebuilt which areeithercontrolledby blackor by white. To
avoid infinite gamesrepetitionis not allowed. Furthermorea playeris alwaysallowedto
pass.Theplayerthatin theendcontrolsmostterritory wins thegame.



The last decadesstimulatedby Ing’s million-dollar price for the first computerprogram
to defeata professionalGo player(which hasnow expiredunchallenged)Go hasreceved
significantattentionfrom Al research.Yet, despiteall efforts, the bestcomputerGo pro-
gramsarestill in theirinfangy comparedo humanGo grandmastersDueto thecompleity
of Go, brute-forcesearchtechniquesare useless.Sincecurrenttop programsarenot able
to acquireGo knowledgeautomaticallythe Go systemsaresupportedy theprogrammers’
Go skills andGo knowledge.Hencethey tendto becomeextremelycomplex anddifficult
to maintainwhenthe programmerdry to increasetheir playing strength. In principle a
learningsystemshouldbe ableto overcomethis problem.

Artificial NeuralNetworks(ANNSs) have beenappliedsuccessfullyo learnseveralpattern-
recognitiontasks.ThereforeANNs seemreasonableandidatedor building a systemthat
canlearnto play Go. ANNs comein mary flavorsrangingfrom simplefeedforwardpercep-
tron networksto highly specializedecurrennetwork architecturesAn importantquestion
thereforeis the choiceof network architecture.Usually network architecturesansimply
be evaluatedby trial anderror. However, sincetraininga network to play Go canbecome
extremelytime-consumingand difficult to evaluate,we decidedto first testarchitectures
onsimpleunderlyingaspect®f thegamesuchasthetaskof determiningconnectednessr
countingliberties.

The main focus of this paperis on learningto determineconnectednesketweenstones
from examples. For now we are not even looking at the possibility of connectingtwo

stonesunderalternatingplay. We just focus on the questionwhethera systemcanlearn
to perceve thattwo stonesare connectedegardlessof ary extra moves. Although this

may seemlik e atrivial task,oneof the authors having someexperiencewith teachingGo

to humanbeginners,often found that even humansinitially have problemswith exactly

this task. Striking examplesare beginnersnot removing capturedstones,or prematurely
removing stoneghatarenot completelysurroundedet.

A slightly differenttype of connectednessyhich we call global connectednessiasbeen
extensiely studiedfor perceptrons.Determiningglobal connectednesis determiningif
a binary imagecontainsexactly one object. Detectingconnectednedsetweentwo pixels
is an underlyingfunction and an isomorphismof the questionif, in Go, two stonesare
connectedSincefor determiningconnectednedsetweerstonesve only needto consider
onecolor, thisissuecouldequivalentlybediscussedh the context of binaryimages.

In 1969Minsky andPapert[2] shovedthatperceptrongannotiearntheattribute of global
connectednessln the 1988 epilogueof the expandededition they aguedthat the same
holdsfor multi-layerperceptroMLP) networks. However comparinghis statementvith

thewell-known factthat MLPs canapproximateary functionarbitrarily closewhengiven
sufficient hiddenunits, we may raisethe questionwhetherit is possibleto developa net-
work architectureghatlearnsto determineconnectedness.

RecentlyWang[7] proposeda specialkind of recurrenineural-netwrk architecturebased
on coupledoscillators,ableto determinethe numberof unconnecteabjectsin animage
(global connectedness)Although the resultsseempromising, his network is prewired
ratherthantrainedby examples.As an alternatie we introducethe Eye-basedRecurrent
Network Architecture(ERNA) thatlearnsto classifyboardpositions.Thenew architecture
is inspiredby the humaneye functionandis appliedto thetaskof learningconnectedness;
its performanceas comparedvith threeothernetwork architectures.

Althoughmaoreresearclis pendingwe alsopresensomeinitial resultsonlearningto count
liberties. In Go the numberof liberties of a (group of) stone(s)is the numberof unique
freeneighboringntersectionsThe numberof libertiesis animportantmeasuref strength
sinceit is alower boundon the numberof stoneshatmustbe placedbeforecapture;.e.,
only whenthe numberof libertiesis zeroa stoneis removed from the board. Knowledge
of connectednesds only oneunderlyingaspecbf countingliberties. Therefordearningto



countlibertiesmaywell presentanevenmorechallengingtask.

Sincethetasksmentionedabore canbe hand-codegerfectly somereadersmay question
theusefulnes®f learningthesetasks.The authorshowever feel thatin thelight of scaling
up to determinemore complex issuesin Go, it is importantthat the learningmechanism
should(atleastin principle) beableto learnsuchbasicconceptsThis howeverdoesby no
meansmply thata high-endGo-playingengineshouldnot be strengthenedy additional
hand-codedeatures.

The remainderof this paperis organizedasfollows. In section2 the new network archi-

tectureis introduced. Section3 explainsthe training procedure.In section4 we present
experimentson connectednes$ection5 containssomepreliminaryresultson learningto

countliberties. Finally, section6 providesconclusionsandfutureresearch.

2 ERNA

The standardeed-forward multi-layer perceptrorarchitecture MLP) for patternclassifi-
cationusuallyhasonehiddenlayerwith non-lineartransferfunctions,is fully connectedo
all inputs,andhasanoutputlayerwith oneneuronassignedo eachclass.Severaltraining
algorithmsexist for this network architecturethatcanfind reasonablgoodsolutionsfor a
greatvarietyof supervised-learnintasks.

The disadwantageof usingthe MLP for raw board classificationis that the architecture
doesnot exploit arny knowledgeaboutthe topologicalorderingof the grid. Althoughthe
intersectionsaretopologicallyfixed on the rectangulagrid, the corventionalnetwork ar-
chitecturedreatevery intersectionjust asan (arbitrary) elementof the input vector, thus
ignoringthe spatialorderof the original representationFor humanshis disadwantagebe-
comesevidentin thetaskof recognizingnaturalimagesn which thespatialorderof pixels
is removedeitherby randompermutationor by concatenatioiinto alineararray Clearly,
for methodsdealingwith low-level imageproperties the topologicalorderingis useful.
This obsenationinspiredusto employ aspecialinput for our new network architecture.

Guidedby the unrivaledperformancef humanvision andthefactthathumangandmary
otheranimals)have eyeswe designedERNA, an Eye-basedRecurreniNetwork Architec-
ture. Figurel shavsthemaincomponent®f ERNA. In ourarchitecturetheeyeis aninput
structurecovering a local subsewf intersectionsurroundinga movable point of fixation
(seeupperleft corner).Thefocusingandscanningoperation®f the eye imposespatialor-
derontotheinput, thusautomaticallyproviding informationaboutthetopologicalordering
of theintersections.

The movementof the eye is controlledby five actionneurong(left, right, up, down, stay).
Togethemwith theactionneurondor classification(onefor eachclass)}they form theaction
layer (seeupperright corner).

Focusingthe eye on relevantintersectionsisuallyrequiresmultiple actions. Sinceknowl-
edgeaboutpreviously obsenedpixelsmaybeneededamemoryseemsiecessaryA mem-
ory is implementedy addingrecurrentconnectiongo the network architecture The sim-
plestwayto dothisis linking theoutputof the hiddenlayerdirectly to theinput. However,
sinceinformationis partially redundantan additionallinear layer, calledglobalmemory
is appliedto compressnformationbetweerthe outputof the hiddenlayerandtheinputfor
thenext iteration.

Sincetheglobalmemoryhasnotopologicalordering(with respecto thegrid structureand
is overwrittenat every iteration, it is not well suitedfor long-termstorageof information
relatedto specificlocationson the board. Therefore,a local memoryformed by linear
neuronscoupledto the positionof the eye input is devised. At eachiteration,the hidden
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Figurel: ERNA

layeris connectedo the neuronsof the local memoryassociateavith the areavisible by
theeye. In ERNA the numberof local memoryneuronsfor anintersectioraswell asthe
readableandwritable window size aredefinedbeforehand.The operationof the network
is furtherfacilitatedby threeextra input neurongepresentinghe co-ordinateof theeye’s
pointof fixation (X,Y) andthe maximumnumberof iterationsleft ().

Below we briefly discussthe operationof ERNA. At eachiterationstepthe hiddenlayer
performsa non-linearmappingof input signalsfrom the eye, thelocal memory the global
memory theactionlayerandthethreeextrainputsto thelocalmemory theglobalmemory
andtheactionlayer. Thenetwork thenexecutesheactionassociateavith theactionneuron
with the largestoutputvalue. The network iteratesuntil the selectedaction performsthe
classificationpr amaximumnumberof iterationsis reached.

We notethat, next to the normalrecurrentconnection®f thememory in ERNA theaction
layeris alsorecurrentlyconnectedo the hiddenlayer, thusallowing (back)propagationf
informationthroughall theactionneurons.

Sincethe eye automaticallyincorporateknowledgeaboutthe topologicalorderingof in-
tersectionsnto thenetwork architectureye expectit to facilitatelearningin topologically-
orientedraw-boardclassificatiortasks,i.e., with the samenumberof training examplesa
betterclassificationperformanceshouldbe obtained. To evaluatethe addedvalue of the
eye andthat of the recurrentconnectionsERNA is comparedwith threeother network
architectures.

The first network is the MLP, which hasa feed-forward architecturewith one non-linear
hiddenlayer. The secondnetwork is a feed-forward network with an eye. This network
is astripped-davn versionof ERNA. All recurrentconnectionsareremovedby settingthe
numberof neurondor localandglobalmemoryto zero. Previousactionvaluesarealsonot
includedin theinput. Thethird network is arecurrennetwork with afully-connectednput,
a fully-connectedrecurrenthiddenlayer with non-lineartransferfunctions,and a linear
outputlayerwith anactionneuronfor eachclassandan extra actionneuronfor choosing
anotheriteration (classthinking). The differencewith the MLP is that the hiddenlayer
hasrecurrentconnectionandthe outputlayer hasonemoreaction-neuron.This network
architecturds very similar to the well-known Elmannetwork [1] exceptthatsignalsalso



propagateecurrentlybetweertheactionlayerandthehiddenlayer(ashappensn ERNA).

3 Training procedure

In our experiments,ERNA andthe other three networks were trainedwith the resilient
propagationalgorithm (RPROP) developedby Riedmiller and Braun[5]. RPROPis a
gradient-basedraining procedurethat overcomesthe disadwantagesof gradient-descent
techniquegslonvnessblurredadaptvity, choiceof learningparametersgtc.).

The gradientusedby RPROP consistsof partial derivativesof eachnetwork weight with

respectto the (meansquare)error betweenthe actual output valuesand the target out-
put valuesof the network. For the MLP the tarmget valuesare directly derived from class
information. For ERNA the calculationof tamgetsis lesstrivial andwill be discussedn

subsectiorB.1.

Whenthe target valuesare known, the gradientfor feed-forward networks can be calcu-
lated by repeatedapplicationof the chainrule, using standardbackpropagationFor the
recurrentnetworks several techniquescan be appliedfor calculatingthe gradient[3]. In
our experimentsthe gradientis calculatedwith backpropagatiothroughtime [9], which
correspondso performingstandardackpropagationn the network unfoldedin time.

The quality of the weightupdatesstronglydepend®n the generalizatiorof the calculated
gradient. Therefore,all training was donein batch. This meansthat the gradientwas
averagedover all training examplesheforeperformingthe RPROP weightupdate.

3.1 Action values

The calculationof the gradientrequirestargetvalues. SinceERNA hasto control actions
thatdo not directly performclassificationreinforcementearningis used.However, in re-

inforcementearningthereareno pre-definedargets.Insteadjncidentalpositive (reward)
or negative (punishmentyeinforcemensignalsconstitutetheteachingsignal. The network

must be trainedto maximizethe sum of the reinforcementdor a completesequencef

actions.An appropriateeinforcement-learninghethodis Q-learning[8].

Q-learningis a methodfor learningstate-actiorvalues.A state-actiorvalue,or Q-value,is

themaximumexpectedsumof reinforcementshatcanbeobtainedrom agivenstatewhen
performingthe associatedction. For neuralnetworks this meansthat for eachpossible
action,the network hasan associate@ctionneuronthatis trainedto predictthe Q-value.
By definitionthe optimal Q-valuesmustsatisfy

Q(st,as) =14 + 7{23?@(3&1, ai41) 1)

wherer; is theimmediatereward after executingactiona, in states; attime ¢, and~ is a
discountfactorfor long-termconsequenced actions.Althoughfor finite sequences can
be setexactly to 1, it is customaryto usesomavhatsmallervaluesto favor quick results.
However, if + is chosertoo low, the network tendsto behave probabilistically

Thetargetfunctionfor Q-learningis directly derivedfrom (1) in theform of
T(st,ae) =1+ max Q' (8t41,a141) 2

for which @' meansthat the estimationof the network is usedinsteadof the optimal Q-
value(whichis unknown).

Althoughthetargetscalculatedoy formula(2) give reasonableesults,corvergences usu-
ally quite slow. Thereasoris thatlong chainsof actionsdelaylearningfrom distantrein-



forcementsignals. To overcomethis problemQ(\)-learning[4] [6] [8] canbe used. The
targetfunctionfor Q(\)-learningcanbe definedrecursvely as

T(st;ar) =7 +7((1—=A) Igl?ff Q'(Stﬂ, agy1) + /\glifT(stH; aiy1)) 3

in which X is aweightingfactorbetweern0 and1 thatdetermineghe relative contribution
of future reinforcementdo the estimatedargetvalue. Since(3) usesthe target valuefor
theoptimalactionatthe next iteration,it canonly be appliedin a chainof optimalactions.
The executionof non-optimalactionsduring training, known asexploration, is necessary
to ensurghatoptimal Q-valuescanbelearned.Thereforewhenattimet¢+1 anon-optimal
actionis executed2) is usedinsteadof (3). Whena, is afinal action(usuallyclassification)
only thedirectreinforcemensignalr; is usedastargetvalue.

4 Learning connectedness

4.1 Thedata set

In Gotwo stonesareconnectedf they sharehesamecolorandtheirdistancas 1 (diagonal
connectionsarenot used). Furthermorejf stoneA is connectedo B andB is connected
to C, A is alsoconnectedo C. (Note that by this definition we ignore stoneghat are not

connectedut canalwaysbe connectedinderalternatingplay.)

For theexperimentssquaretx4,5x5, and6x 6 boardpositionswerecreated Boardswith
the upperleft stoneconnectedo the lower right stonewerelabelledconnectedall others
were labelledunconnected For simplicity we binarizedthe boards,thustreatingenemy
stonesandfree pointsequal(not connecting).

The boardswerenot generatedcompletelyat random,becausen suchdataall networks
performalmostoptimally. Thereasonis thatin 75% of the casesthe classunconnected
canbedeterminedrom thetwo crucial cornersalone(both mustcontaina stonefor being
connected)andin additionthe numberof placedstoness a strongindicatorfor connect-
edness.

We definea minimal connected path asa pathof stonesn which eachstoneis crucial for
connectedned#f ary stoneis removedthetwo cornersareno longerconnected)To build
areasonablgifficult dataset,we startedto generatehe setof all minimal connectegbaths
betweenthe two corners. From this seta new setwas generatedy making copiesand
randomlyflipping 15% of the points. For all imagesboth crucialcornersalwayscontained
a stone. Duplicateboardsand boardswith lessstonesthanthe minimal pathlength (for
connectinghetwo corners)wvereremovedfrom the dataset.

After applyingthis procesdor creatingthe 4x 4, 5x5 and6x 6 boardsthe threedatasets
weresplitinto independentrainingandtestsets all containinganequalnumberof unique
positive and negative examples. The threesetscontained300, 1326, and 1826 training
examplesand100,440,and608testexamplesyespectiely.

4.2 Experimental results

The experimentspresentederecomparethe generalizingability of ERNA with thoseof
threeothernetwork architecturesThelearningtaskis to determineconnectednedsetween
stoneslt is doneby focusingon the relationbetweerthe numberof trainingexamplesand
the classificatiorperformanceon anindependentestset.

To preventover-training,in eachrun avalidationsetwasselectedrom thetraining exam-
plesandwasusedto find the optimal point for stoppingthe training. For the experiments



with the4x 4 boardsl00validationsamplesvereused.For boththe 5x5 and6x 6 boards
200validationsamplesvereused.

Becauseof limited computationalresourcesand the fact that reinforcementearningis

muchslower thansupervisedearning,the sizeof the hiddenlayerwastestedexhaustvely

only for the MLP. For ERNA we establishedeasonableettings for the architectureand
training parametershasedon someinitial testson 4x4 boards. Although thesesettings
were keptthe samefor all our experiments othersettingsmight give betterresultsespe-
cially for the largerboards. The architectureso obtainedwasasfollows. For the hidden
layer 25 neuronswith tangentsigmoidtransferfunctions,wereused. The areaobsened

by the eye containedthe intersectionon the fixation point and the four direct neighbors,
i.e., the obsened areawaswithin a Manhattan-distancef one from the centerpoint of

focus. The outputto the local memorywas connectecbnly to the centerpoint. For each
point threelinear neuronswere assignedo the local memory The global memorycon-

tained15 linear neurons. All memoryand action neuronswereinitialized at 0. During

training, actionswereselectedandomly5% of thetime. In the restof the casesthe best
actionwasselecteddirectly 75% of the time, and25% of the time actionswere selected
with a probability proportionalto their estimated-value. During validationandtestingof

courseno explorationwasused.Themaximumnumberof iterationsperexamplewassetat

the numberof intersectionsNegative reinforcement®f —1 werereturnedfor moving the

eye out of range,exceedingthe maximumnumberof iterationsor performingthe wrong

classification.A positive reinforcemenbf +1 wasreturnedfor the correctclassification.
The Q-learningparameters\ and~y weresetat 0.3and0.97. All network weightswere
initialized with smallrandomvalues. Trainingwasperformedin batchfor a maximumof

5000epochs.

TheMLP wastestedwith hiddenlayersof 3, 6,12,25,50and100neuronsln eachrun, the
optimallayersizewasselecteasedn theperformancenthevalidationset. Supervised
trainingwith RPROPwasperformedn batchfor amaximumof 2000epochs.

Thestripped-davn versionof ERNA (thefeed-forwardnetwork with eye) waskeptsimilar
to ERNA asmuchaspossible . Thesizesof thehiddenlayerandtheeye werekeptthesame
andtrainingwasdonewith exactly the samédearningparameters.

Thefully-connectedecurrennetwork (withouteye) alsousedahiddenlayerof 25neurons,
andtrainingwasdonewith exactly the samelearningparameter&xceptthatthis network
wasallowedto train for amaximumof 10,000epochs.

It shouldbe notedthat the eye was always initialized in the upperleft corner This is
a reasonablygood initialization point that significantly improves performancefor small
training sets. We did not considerthis to be unfair for comparingthe networks for two
reasonsfirst, evenwhenin our initial experimentsthe eye wasinitialized in oneof the
othertwo corners ERNA alwaysoutperformedhe othernetworksfor largertraining sets.
And secondat leastfor the taskdiscussedn this paper finding a good startingposition
canbedoneautomaticallyby trial anderrorbasedn theperformancenthevalidationset
(whichis stronglycorrelatedwith the performanceon thetestset).

In figures2, 3 and4 the averageperformances plottedfor the four network architectures
testedonthe4x 4, 5x5 and6x 6 boardsyespectiely. The horizontalaxis shovs the num-
ber of training exampleswith logarithmicscaling. The vertical axis shavs the fraction of
correctly-classifiedestsampleg1.0for perfectclassification0.5for pureguessing).

Theplotsshaw thatfor all boardsizesbothERNA andthestripped-davn versionof ERNA
outperformthe two networks without eye. Moreover, we canseethat the recurrentcon-
nectionsare only usefulfor ERNA, andthenonly when suficient training examplesare
available.
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5 Counting liberties

5.1 Thedata set

A liberty of stoneA is a free intersectionon the boardthat hasdistancel to A orto a
stoneconnectedo A. SinceERNA is built for classificatiorthe easiestvay to testERNA’s
ability to countlibertiesis to definea class(and an associatedction neuron)for each
possiblenumberof uniqueliberties.

Thedatasefor learningto countlibertieswasgeneratedh thefollowing way. Firstwe gen-
eratedrandomlegal 4x 4 boardpositionswith a black stonein the upperleft corner Then
the numberof liberties of that stonewascalculatedand usedto assigna classlabel. The
classesvererestrictedto discriminatebetweeneitherl, 2, 3, or morethen3 liberties(so
4 classesvereused).For eachclassanequalnumberof uniquetraining andtestexamples
wasgenerated.

5.2 Experimental results

The experimentpresentedherecompareghe generalizingability of ERNA with the feed-
forwardMLP architectureThelearningtaskis to countthelibertiesof a pre-definedstone.
It is doneby focusingon the relation betweenthe numberof training examplesandthe
classificatiorperformancen anindependentestset.

For simplicity thetrainingalgorithmandall parametersverekeptthe sameasdescribedn
thepreviouschapter The only differencewasthatnow 4 classesvereusedinsteadof two,
thusresultingin two moreactionneurons.

In figure 5 the averageperformancas plottedfor the two network architecturesThe hori-

zontalaxis shavs the numberof training exampleswith logarithmicscaling. The vertical

axis shaws the fraction of correctly-classifiedestsampleg1.0 for perfectclassification,
0.25for pureguessing)Theplot shavs thatfor this problemERNA outperformghe MLP

for all sizesof thetrainingset.
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6 Conclusionsand future research

Recognizingconnectednessith neuralnetworksis a problemwith a history datingback
to Minsky andPapert[2]. Their resultsled several peopleto believe thatMLPs would not
be ableto learnconnectednesdn this paperit is shovn thatthe problemof connected-
nesshetweerntwo stonesanbelearnedrom examples.Our experimentsshowv thatERNA
greatlyimprovesgeneralizatiortomparedo boththe MLP andthe fully-connectedecur
rentnetwork. However, sinceour experimentsalsoshaved that somegeneralizatiorcan
even be expectedfrom the MLP, this network still might be a good choicein the caseof
hugetrainingsets.

The experimentgpresentedh this paperseemto confirmour intuitive ideathatan eye-like
input structurecanfacilitatelearningby automaticallyincorporatingknowledgeaboutthe
topologicalorderingof intersectionsnto the network architecture For eye-basedetwork
architectureswhich control more actionsthanjust the classificationthe useof recurrent
connectionss important. Although our experimentsshaw thatthe fully-connectedrecur
rentnetwork (without eye) doesnot benefitfrom its recurrentconnectionsthis shouldbe
verifiedfor othersizesof the hiddenlayer.

Training recurrentneuralnetworks with simple gradient-descenisually requiresa long

time to corvergeto reasonablsolutions.In someinitial experimentsve found RPROPto

behae 2 to 20timesfasterthanstandardyradient-descentt would thereforebeinteresting
to seehow RPROP performson othertasks.

While someinitial experimentshave beendone, ERNA still hasmary parameterg¢o be
tuned. For instancethe numberof neuronsassignedo the eye, their distribution over the
field of view, the sizesof the local memory globalmemoryandthe hiddenlayer, possible
trade-ofs betweenthesenumbersandthe effect of recurrentlylinking the actionneurons
shouldbe studiedmorethoroughly

An importantpointaboutthenew architecturas thefactthatERNA operatesndependently
of theboardsize.Futureresearchshouldgive insightinto thequestiorhow well this feature
canbe exploitedwhenscalingup to largerboards.

Although in this paperERNA was mainly testedon connectednesghe architecturein
principle supportsary kind of positionalclassification Furtherresearctshouldbe doneto
seehow the architecturgperformson othergo-relatectlassificatiortasks.

A first stephasbeentaken with the countingof liberties, neverthelessnuch work still
remainsto be done. For examplethe questionhow ERNA scalesup to larger boardsand
larger groupsof stonesis still unclear Somerecentresultsseemto suggesthat, for the
taskof countingliberties,ERNA performssignificantlyworseon larger groupsof stones
thatarenotin the corner A plausibleexplanationmight bethatthe corneris justtoo easy
However, we expectthat the larger numberof actionsis a more seriousproblemthatis
causingpblurredgradientbehavior.
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