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Abstract

LearningtoplayGofromtherulesaloneisextremelyhardfor computers.
On thehumanscale,learningcomputersperformextremelyweak.Even
with a largeamountof hand-codedknowledgecomputersarebarelyable
to competeat a weak amaturelevel. The reasonfor this lies (at least
partially) in the visual natureof the game. Over millions of yearsthe
humanvisual systemhasevolved into an efficient learningsystemthat
performsextremelywell ona largenumberof pattern-recognitiontasks.
This paperproposesa new Eye-basedRecurrentNetwork Architecture
(ERNA) for raw boardclassification.Thenew architectureis inspiredby
the humaneye function andcanbe appliedto a broadrangeof visual-
classificationtasks.ERNA is trainedby acombinationof Q-learningand
RPROP. Theclassificationperformanceis comparedwith othernetwork
architectureson the taskof determiningconnectednessbetweenstones.
Wealsopresentsomepreliminaryresultsonthetaskof learningto count
liberties. Theexperimentsshow thatERNA outperformsboth the stan-
dard multi-layer perceptronnetwork and the fully-connectedrecurrent
network on thetasksmentionedabove. Thisperformanceleadsusto the
conclusionthattheeyefacilitateslearningin thetopologically-structured
domainof Go.

1 Introduction

Sincethe foundingyearsof Artificial Intelligence(AI) computergameshave beenused
asa testbedfor AI algorithms.Many game-playingsystemshave reachedanexpert level
usinga search-basedapproach.In chessthis approachachievedworld-classstrength.Go
is a notableexception.

Thegameof Go is playedby two players,blackandwhite,whoconsecutively placestones
of their color on the intersectionsof a squaregrid. Usually the grid contains19 � 19 in-
tersections.However the rulesareflexible enoughto accommodateany otherboardsize.
During the gamestonesremainfixed or areremoved(captured)whenthey areno longer
connectedto neighboringemptyintersections.Initially theboardis empty, but asthegame
developssomestableregionsarebuilt whichareeithercontrolledby blackor by white. To
avoid infinite gamesrepetitionis not allowed. Furthermorea playeris alwaysallowed to
pass.Theplayerthatin theendcontrolsmostterritory wins thegame.



The last decades,stimulatedby Ing’s million-dollar price for the first computerprogram
to defeata professionalGoplayer(whichhasnow expiredunchallenged),Go hasreceived
significantattentionfrom AI research.Yet, despiteall efforts, thebestcomputerGo pro-
gramsarestill in their infancy comparedto humanGograndmasters.Dueto thecomplexity
of Go, brute-forcesearchtechniquesareuseless.Sincecurrenttop programsarenot able
to acquireGoknowledgeautomaticallytheGosystemsaresupportedby theprogrammers’
Go skills andGo knowledge.Hencethey tendto becomeextremelycomplex anddifficult
to maintainwhen the programmerstry to increasetheir playing strength. In principle a
learningsystemshouldbeableto overcomethisproblem.

Artificial NeuralNetworks(ANNs) havebeenappliedsuccessfullyto learnseveralpattern-
recognitiontasks.ThereforeANNs seemreasonablecandidatesfor building a systemthat
canlearnto playGo. ANNscomein many flavorsrangingfromsimplefeedforwardpercep-
tronnetworksto highly specializedrecurrentnetwork architectures.An importantquestion
thereforeis thechoiceof network architecture.Usuallynetwork architecturescansimply
beevaluatedby trial anderror. However, sincetraininga network to play Go canbecome
extremelytime-consuminganddifficult to evaluate,we decidedto first testarchitectures
onsimpleunderlyingaspectsof thegamesuchasthetaskof determiningconnectednessor
countingliberties.

The main focusof this paperis on learningto determineconnectednessbetweenstones
from examples. For now we are not even looking at the possibility of connectingtwo
stonesunderalternatingplay. We just focuson the questionwhethera systemcanlearn
to perceive that two stonesareconnectedregardlessof any extra moves. Although this
mayseemlike a trivial task,oneof theauthors,having someexperiencewith teachingGo
to humanbeginners,often found that even humansinitially have problemswith exactly
this task. Striking examplesarebeginnersnot removing capturedstones,or prematurely
removing stonesthatarenot completelysurroundedyet.

A slightly differenttypeof connectedness,which we call global connectedness,hasbeen
extensively studiedfor perceptrons.Determiningglobal connectednessis determiningif
a binary imagecontainsexactly oneobject. Detectingconnectednessbetweentwo pixels
is an underlyingfunction andan isomorphismof the questionif, in Go, two stonesare
connected.Sincefor determiningconnectednessbetweenstoneswe only needto consider
onecolor, this issuecouldequivalentlybediscussedin thecontext of binaryimages.

In 1969Minsky andPapert[2] showedthatperceptronscannotlearntheattributeof global
connectedness.In the 1988epilogueof the expandededition they arguedthat the same
holdsfor multi-layerperceptron(MLP) networks.Howevercomparingthis statementwith
thewell-known factthatMLPs canapproximateany functionarbitrarily closewhengiven
sufficient hiddenunits,we mayraisethequestionwhetherit is possibleto developa net-
work architecturethatlearnsto determineconnectedness.

RecentlyWang[7] proposeda specialkind of recurrentneural-network architecturebased
on coupledoscillators,ableto determinethe numberof unconnectedobjectsin an image
(global connectedness).Although the resultsseempromising,his network is prewired
ratherthantrainedby examples.As an alternative we introducethe Eye-basedRecurrent
Network Architecture(ERNA) thatlearnsto classifyboardpositions.Thenew architecture
is inspiredby thehumaneye functionandis appliedto thetaskof learningconnectedness;
its performanceis comparedwith threeothernetwork architectures.

Althoughmoreresearchis pendingwealsopresentsomeinitial resultsonlearningto count
liberties. In Go the numberof libertiesof a (groupof) stone(s)is the numberof unique
freeneighboringintersections.Thenumberof libertiesis animportantmeasureof strength
sinceit is a lower boundon thenumberof stonesthatmustbeplacedbeforecapture,i.e.,
only whenthenumberof libertiesis zeroa stoneis removedfrom theboard.Knowledge
of connectednessis only oneunderlyingaspectof countingliberties.Thereforelearningto



countlibertiesmaywell presentanevenmorechallengingtask.

Sincethetasksmentionedabovecanbehand-codedperfectly, somereadersmayquestion
theusefulnessof learningthesetasks.Theauthorshowever feel thatin thelight of scaling
up to determinemorecomplex issuesin Go, it is importantthat the learningmechanism
should(at leastin principle)beableto learnsuchbasicconcepts.Thishoweverdoesby no
meansimply thata high-endGo-playingengineshouldnot bestrengthenedby additional
hand-codedfeatures.

The remainderof this paperis organizedasfollows. In section2 the new network archi-
tectureis introduced.Section3 explainsthe training procedure.In section4 we present
experimentson connectedness.Section5 containssomepreliminaryresultson learningto
countliberties.Finally, section6 providesconclusionsandfutureresearch.

2 ERNA

The standardfeed-forwardmulti-layer perceptronarchitecture(MLP) for patternclassifi-
cationusuallyhasonehiddenlayerwith non-lineartransferfunctions,is fully connectedto
all inputs,andhasanoutputlayerwith oneneuronassignedto eachclass.Severaltraining
algorithmsexist for thisnetwork architecture,thatcanfind reasonablygoodsolutionsfor a
greatvarietyof supervised-learningtasks.

The disadvantageof using the MLP for raw boardclassificationis that the architecture
doesnot exploit any knowledgeaboutthe topologicalorderingof the grid. Although the
intersectionsaretopologicallyfixedon the rectangulargrid, the conventionalnetwork ar-
chitecturestreatevery intersectionjust asan (arbitrary)elementof the input vector, thus
ignoringthespatialorderof theoriginal representation.For humansthis disadvantagebe-
comesevidentin thetaskof recognizingnaturalimagesin which thespatialorderof pixels
is removedeitherby randompermutationor by concatenationinto a lineararray. Clearly,
for methodsdealingwith low-level imageproperties,the topologicalorderingis useful.
Thisobservationinspiredusto employ aspecialinput for our new network architecture.

Guidedby theunrivaledperformanceof humanvisionandthefactthathumans(andmany
otheranimals)have eyeswe designedERNA, anEye-basedRecurrentNetwork Architec-
ture.Figure1 showsthemaincomponentsof ERNA. In ourarchitecture,theeyeis aninput
structurecoveringa local subsetof intersectionssurroundinga movablepoint of fixation
(seeupperleft corner).Thefocusingandscanningoperationsof theeye imposespatialor-
derontotheinput, thusautomaticallyproviding informationaboutthetopologicalordering
of theintersections.

Themovementof theeye is controlledby five actionneurons(left, right, up, down, stay).
Togetherwith theactionneuronsfor classification(onefor eachclass)they form theaction
layer(seeupperright corner).

Focusingtheeye on relevantintersectionsusuallyrequiresmultiple actions.Sinceknowl-
edgeaboutpreviouslyobservedpixelsmaybeneededamemoryseemsnecessary. A mem-
ory is implementedby addingrecurrentconnectionsto thenetwork architecture.Thesim-
plestway to do this is linking theoutputof thehiddenlayerdirectly to theinput. However,
sinceinformationis partially redundant,anadditionallinear layer, calledglobalmemory,
is appliedto compressinformationbetweentheoutputof thehiddenlayerandtheinput for
thenext iteration.

Sincetheglobalmemoryhasnotopologicalordering(with respectto thegrid structure)and
is overwrittenat every iteration,it is not well suitedfor long-termstorageof information
relatedto specificlocationson the board. Therefore,a local memoryformed by linear
neuronscoupledto the positionof the eye input is devised. At eachiteration,the hidden
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Figure1: ERNA

layer is connectedto theneuronsof the local memoryassociatedwith theareavisible by
theeye. In ERNA thenumberof local memoryneuronsfor an intersectionaswell asthe
readableandwritablewindow sizearedefinedbeforehand.Theoperationof thenetwork
is furtherfacilitatedby threeextra input neuronsrepresentingtheco-ordinatesof theeye’s
pointof fixation (X,Y) andthemaximumnumberof iterationsleft (I).

Below we briefly discussthe operationof ERNA. At eachiterationstepthe hiddenlayer
performsa non-linearmappingof input signalsfrom theeye, thelocal memory, theglobal
memory, theactionlayerandthethreeextra inputsto thelocalmemory, theglobalmemory
andtheactionlayer. Thenetwork thenexecutestheactionassociatedwith theactionneuron
with the largestoutputvalue. The network iteratesuntil the selectedactionperformsthe
classification,or a maximumnumberof iterationsis reached.

We notethat,next to thenormalrecurrentconnectionsof thememory, in ERNA theaction
layeris alsorecurrentlyconnectedto thehiddenlayer, thusallowing (back)propagationof
informationthroughall theactionneurons.

Sincethe eye automaticallyincorporatesknowledgeaboutthe topologicalorderingof in-
tersectionsinto thenetwork architecture,weexpectit to facilitatelearningin topologically-
orientedraw-boardclassificationtasks,i.e., with thesamenumberof trainingexamplesa
betterclassificationperformanceshouldbe obtained.To evaluatethe addedvalueof the
eye and that of the recurrentconnections,ERNA is comparedwith threeother network
architectures.

The first network is the MLP, which hasa feed-forwardarchitecturewith onenon-linear
hiddenlayer. The secondnetwork is a feed-forwardnetwork with an eye. This network
is a stripped-down versionof ERNA. All recurrentconnectionsareremovedby settingthe
numberof neuronsfor localandglobalmemoryto zero.Previousactionvaluesarealsonot
includedin theinput. Thethirdnetwork is arecurrentnetworkwith afully-connectedinput,
a fully-connectedrecurrenthiddenlayer with non-lineartransferfunctions,anda linear
outputlayerwith anactionneuronfor eachclassandanextra actionneuronfor choosing
anotheriteration (classthinking). The differencewith the MLP is that the hiddenlayer
hasrecurrentconnectionsandtheoutputlayerhasonemoreaction-neuron.This network
architectureis very similar to the well-known Elmannetwork [1] exceptthat signalsalso



propagaterecurrentlybetweentheactionlayerandthehiddenlayer(ashappensin ERNA).

3 Training procedure

In our experiments,ERNA and the other threenetworks were trainedwith the resilient
propagationalgorithm (RPROP) developedby Riedmiller and Braun [5]. RPROP is a
gradient-basedtraining procedurethat overcomesthe disadvantagesof gradient-descent
techniques(slowness,blurredadaptivity, choiceof learningparameters,etc.).

The gradientusedby RPROP consistsof partial derivativesof eachnetwork weight with
respectto the (meansquare)error betweenthe actualoutput valuesand the target out-
put valuesof the network. For the MLP the target valuesaredirectly derived from class
information. For ERNA the calculationof targetsis lesstrivial andwill be discussedin
subsection3.1.

Whenthe target valuesareknown, the gradientfor feed-forwardnetworks canbe calcu-
latedby repeatedapplicationof the chainrule, usingstandardbackpropagation.For the
recurrentnetworks several techniquescanbe appliedfor calculatingthe gradient[3]. In
our experimentsthe gradientis calculatedwith backpropagationthroughtime [9], which
correspondsto performingstandardbackpropagationon thenetwork unfoldedin time.

Thequality of theweightupdatesstronglydependson thegeneralizationof thecalculated
gradient. Therefore,all training was donein batch. This meansthat the gradientwas
averagedoverall trainingexamplesbeforeperformingtheRPROPweightupdate.

3.1 Action values

Thecalculationof thegradientrequirestargetvalues.SinceERNA hasto controlactions
thatdo not directly performclassification,reinforcementlearningis used.However, in re-
inforcementlearningthereareno pre-definedtargets.Instead,incidentalpositive (reward)
or negative(punishment)reinforcementsignalsconstitutetheteachingsignal.Thenetwork
mustbe trainedto maximizethe sumof the reinforcementsfor a completesequenceof
actions.An appropriatereinforcement-learningmethodis Q-learning[8].

Q-learningis amethodfor learningstate-actionvalues.A state-actionvalue,or Q-value,is
themaximumexpectedsumof reinforcementsthatcanbeobtainedfrom agivenstatewhen
performingthe associatedaction. For neuralnetworks this meansthat for eachpossible
action,the network hasanassociatedactionneuronthat is trainedto predicttheQ-value.
By definitiontheoptimalQ-valuesmustsatisfy
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discountfactorfor long-termconsequencesof actions.Althoughfor finite sequences
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besetexactly to 1, it is customaryto usesomewhatsmallervaluesto favor quick results.
However, if

�
is chosentoo low, thenetwork tendsto behaveprobabilistically.

Thetargetfunctionfor Q-learningis directlyderivedfrom (1) in theform of
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meansthat the estimationof the network is usedinsteadof the optimal Q-
value(which is unknown).

Althoughthetargetscalculatedby formula(2) givereasonableresults,convergenceis usu-
ally quiteslow. Thereasonis that long chainsof actionsdelaylearningfrom distantrein-



forcementsignals.To overcomethis problemQ(7 )-learning[4] [6] [8] canbe used.The
targetfunctionfor Q(7 )-learningcanbedefinedrecursively as

. ���	�8

�����/�9�	�����:�
��;=< 7 �>�?����@�A!�# �B4��%�&�('*)6
8�C�('*) �D� 7 ���6��@�A!$# . ���	�(',)6

���(',)&�E�
(3)

in which 7 is a weightingfactorbetween0 and1 thatdeterminestherelative contribution
of future reinforcementsto the estimatedtargetvalue. Since(3) usesthe target valuefor
theoptimalactionat thenext iteration,it canonly beappliedin a chainof optimalactions.
Theexecutionof non-optimalactionsduring training,known asexploration,is necessary
to ensurethatoptimalQ-valuescanbelearned.Therefore,whenat time - �F;

anon-optimal
actionis executed(2) is usedinsteadof (3). When

� �
is afinal action(usuallyclassification)

only thedirectreinforcementsignal
�	�

is usedastargetvalue.

4 Learning connectedness

4.1 The data set

In Gotwo stonesareconnectedif they sharethesamecolorandtheirdistanceis 1 (diagonal
connectionsarenot used).Furthermore,if stoneA is connectedto B andB is connected
to C, A is alsoconnectedto C. (Note thatby this definition we ignorestonesthatarenot
connectedbut canalwaysbeconnectedunderalternatingplay.)

For theexperiments,square4 � 4,5 � 5,and6 � 6 boardpositionswerecreated.Boardswith
theupperleft stoneconnectedto the lower right stonewerelabelledconnected,all others
werelabelledunconnected.For simplicity we binarizedthe boards,thustreatingenemy
stonesandfreepointsequal(not connecting).

The boardswerenot generatedcompletelyat random,becauseon suchdataall networks
performalmostoptimally. The reasonis that in 75% of the casesthe classunconnected
canbedeterminedfrom thetwo crucialcornersalone(bothmustcontaina stonefor being
connected),andin additionthenumberof placedstonesis a strongindicatorfor connect-
edness.

We definea minimal connected path asa pathof stonesin which eachstoneis crucial for
connectedness(if any stoneis removedthetwo cornersareno longerconnected).To build
areasonablydifficult dataset,westartedto generatethesetof all minimalconnectedpaths
betweenthe two corners. From this seta new setwasgeneratedby makingcopiesand
randomlyflipping 15%of thepoints.For all imagesbothcrucialcornersalwayscontained
a stone. Duplicateboardsandboardswith lessstonesthanthe minimal pathlength(for
connectingthetwo corners)wereremovedfrom thedataset.

After applyingthis processfor creatingthe4 � 4, 5 � 5 and6 � 6 boards,thethreedatasets
weresplit into independenttrainingandtestsets,all containinganequalnumberof unique
positive andnegative examples. The threesetscontained300, 1326,and1826 training
examplesand100,440,and608testexamples,respectively.

4.2 Experimental results

The experimentspresentedherecomparethe generalizingability of ERNA with thoseof
threeothernetwork architectures.Thelearningtaskis to determineconnectednessbetween
stones.It is doneby focusingon therelationbetweenthenumberof trainingexamplesand
theclassificationperformanceon anindependenttestset.

To preventover-training,in eachrun a validationsetwasselectedfrom thetrainingexam-
plesandwasusedto find theoptimalpoint for stoppingthetraining. For theexperiments



with the4 � 4 boards100validationsampleswereused.For boththe5 � 5 and6 � 6 boards
200validationsampleswereused.

Becauseof limited computationalresourcesand the fact that reinforcementlearning is
muchslower thansupervisedlearning,thesizeof thehiddenlayerwastestedexhaustively
only for the MLP. For ERNA we establishedreasonablesettings,for the architectureand
training parameters,basedon someinitial testson 4 � 4 boards. Although thesesettings
werekept the samefor all our experiments,othersettingsmight give betterresultsespe-
cially for the largerboards.The architectureso obtainedwasasfollows. For the hidden
layer 25 neurons,with tangentsigmoidtransferfunctions,wereused.The areaobserved
by the eye containedthe intersectionon the fixation point andthe four direct neighbors,
i.e., the observed areawaswithin a Manhattan-distanceof one from the centerpoint of
focus. The outputto the local memorywasconnectedonly to the centerpoint. For each
point threelinear neuronswereassignedto the local memory. The global memorycon-
tained15 linear neurons. All memoryandactionneuronswere initialized at 0. During
training,actionswereselectedrandomly5% of thetime. In the restof thecases,thebest
actionwasselecteddirectly 75% of the time, and25% of the time actionswereselected
with aprobabilityproportionalto theirestimatedQ-value.Duringvalidationandtestingof
coursenoexplorationwasused.Themaximumnumberof iterationsperexamplewassetat
thenumberof intersections.Negative reinforcementsof

<5;
werereturnedfor moving the

eye out of range,exceedingthe maximumnumberof iterationsor performingthe wrong
classification.A positive reinforcementof

�G;
wasreturnedfor the correctclassification.

The Q-learningparameters7 and
�

weresetat 0.3 and0.97. All network weightswere
initialized with small randomvalues.Trainingwasperformedin batchfor a maximumof
5000epochs.

TheMLP wastestedwith hiddenlayersof 3, 6,12,25,50and100neurons.In eachrun,the
optimallayersizewasselectedbasedon theperformanceon thevalidationset.Supervised
trainingwith RPROPwasperformedin batchfor a maximumof 2000epochs.

Thestripped-down versionof ERNA (thefeed-forwardnetwork with eye)waskeptsimilar
to ERNA asmuchaspossible.Thesizesof thehiddenlayerandtheeyewerekeptthesame
andtrainingwasdonewith exactly thesamelearningparameters.

Thefully-connectedrecurrentnetwork (withouteye)alsousedahiddenlayerof 25neurons,
andtrainingwasdonewith exactly thesamelearningparametersexceptthat this network
wasallowedto train for a maximumof 10,000epochs.

It shouldbe notedthat the eye was always initialized in the upper left corner. This is
a reasonablygood initialization point that significantly improvesperformancefor small
training sets. We did not considerthis to be unfair for comparingthe networks for two
reasons:first, even whenin our initial experimentsthe eye wasinitialized in oneof the
othertwo corners,ERNA alwaysoutperformedtheothernetworksfor largertrainingsets.
And second,at leastfor the taskdiscussedin this paper, finding a goodstartingposition
canbedoneautomaticallyby trial anderrorbasedon theperformanceon thevalidationset
(which is stronglycorrelatedwith theperformanceon thetestset).

In figures2, 3 and4 theaverageperformanceis plottedfor thefour network architectures
testedon the4 � 4, 5 � 5 and6 � 6 boards,respectively. Thehorizontalaxisshows thenum-
berof trainingexamples,with logarithmicscaling.Theverticalaxisshows thefractionof
correctly-classifiedtestsamples(1.0for perfectclassification,0.5for pureguessing).

Theplotsshow thatfor all boardsizesbothERNA andthestripped-downversionof ERNA
outperformthe two networks without eye. Moreover, we canseethat the recurrentcon-
nectionsareonly useful for ERNA, andthenonly whensufficient training examplesare
available.
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Figure2: Connectednesson4 � 4 boards
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Figure3: Connectednesson5 � 5 boards
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Figure4: Connectednesson6 � 6 boards



5 Counting liberties

5.1 The data set

A liberty of stoneA is a free intersectionon the boardthat hasdistance1 to A or to a
stoneconnectedto A. SinceERNA is built for classificationtheeasiestway to testERNA’s
ability to count liberties is to definea class(and an associatedaction neuron)for each
possiblenumberof uniqueliberties.

Thedatasetfor learningto countlibertieswasgeneratedin thefollowingway. Firstwegen-
eratedrandomlegal 4 � 4 boardpositionswith a blackstonein theupperleft corner. Then
the numberof libertiesof that stonewascalculatedandusedto assigna classlabel. The
classeswererestrictedto discriminatebetweeneither1, 2, 3, or morethen3 liberties(so
4 classeswereused).For eachclassanequalnumberof uniquetrainingandtestexamples
wasgenerated.

5.2 Experimental results

Theexperimentpresentedherecomparesthegeneralizingability of ERNA with thefeed-
forwardMLP architecture.Thelearningtaskis to countthelibertiesof apre-definedstone.
It is doneby focusingon the relationbetweenthe numberof training examplesand the
classificationperformanceonanindependenttestset.

For simplicity thetrainingalgorithmandall parameterswerekeptthesameasdescribedin
thepreviouschapter. Theonly differencewasthatnow 4 classeswereusedinsteadof two,
thusresultingin two moreactionneurons.

In figure5 theaverageperformanceis plottedfor thetwo network architectures.Thehori-
zontalaxisshows thenumberof trainingexamples,with logarithmicscaling.Thevertical
axis shows the fraction of correctly-classifiedtestsamples(1.0 for perfectclassification,
0.25for pureguessing).Theplot showsthatfor thisproblemERNA outperformstheMLP
for all sizesof thetrainingset.
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Figure5: Countinglibertieson 4 � 4 boards



6 Conclusions and future research

Recognizingconnectednesswith neuralnetworks is a problemwith a historydatingback
to Minsky andPapert[2]. Their resultsled severalpeopleto believe thatMLPs would not
be ableto learnconnectedness.In this paperit is shown that the problemof connected-
nessbetweentwo stonescanbelearnedfrom examples.Ourexperimentsshow thatERNA
greatlyimprovesgeneralizationcomparedto boththeMLP andthefully-connectedrecur-
rent network. However, sinceour experimentsalsoshowed that somegeneralizationcan
even be expectedfrom the MLP, this network still might be a goodchoicein the caseof
hugetrainingsets.

Theexperimentspresentedin this paperseemto confirmour intuitive ideathataneye-like
input structurecanfacilitatelearningby automaticallyincorporatingknowledgeaboutthe
topologicalorderingof intersectionsinto thenetwork architecture.For eye-basednetwork
architectures,which control moreactionsthanjust the classification,the useof recurrent
connectionsis important. Althoughour experimentsshow that the fully-connectedrecur-
rentnetwork (without eye) doesnot benefitfrom its recurrentconnections,this shouldbe
verifiedfor othersizesof thehiddenlayer.

Training recurrentneuralnetworks with simplegradient-descentusually requiresa long
time to convergeto reasonablesolutions.In someinitial experimentswe foundRPROPto
behave2 to 20timesfasterthanstandardgradient-descent.It wouldthereforebeinteresting
to seehow RPROPperformsonothertasks.

While someinitial experimentshave beendone,ERNA still hasmany parametersto be
tuned.For instance,thenumberof neuronsassignedto theeye, their distribution over the
field of view, thesizesof thelocal memory, globalmemoryandthehiddenlayer, possible
trade-offs betweenthesenumbers,andtheeffect of recurrentlylinking theactionneurons
shouldbestudiedmorethoroughly.

An importantpointaboutthenew architectureis thefactthatERNA operatesindependently
of theboardsize.Futureresearchshouldgiveinsightinto thequestionhow well this feature
canbeexploitedwhenscalingup to largerboards.

Although in this paperERNA was mainly testedon connectedness,the architecturein
principlesupportsany kind of positionalclassification.Furtherresearchshouldbedoneto
seehow thearchitectureperformsonothergo-relatedclassificationtasks.

A first stephasbeentaken with the countingof liberties, neverthelessmuch work still
remainsto bedone. For examplethe questionhow ERNA scalesup to largerboardsand
larger groupsof stonesis still unclear. Somerecentresultsseemto suggestthat, for the
taskof countingliberties,ERNA performssignificantlyworseon largergroupsof stones
thatarenot in thecorner. A plausibleexplanationmight bethatthecorneris just too easy.
However, we expect that the larger numberof actionsis a moreseriousproblemthat is
causingblurredgradientbehavior.
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